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Abstract

We present the task of second language acqui-

sition (SLA) modeling. Given a history of er-

rors made by learners of a second language, the

task is to predict errors that they are likely to

make at arbitrary points in the future. We de-

scribe a large corpus of more than 7M words

produced by more than 6k learners of English,

Spanish, and French using Duolingo, a popular

online language-learning app. Then we report

on the results of a shared task challenge aimed

studying the SLA task via this corpus, which

attracted 15 teams and synthesized work from

various fields including cognitive science, lin-

guistics, and machine learning.

1 Introduction

As computer-based educational apps increase in

popularity, they generate vast amounts of student

learning data which can be harnessed to drive per-

sonalized instruction. While there have been some

recent advances for educational software in do-

mains like mathematics, learning a language is

more nuanced, involving the interaction of lexi-

cal knowledge, morpho-syntactic processing, and

several other skills. Furthermore, most work that

has applied natural language processing to lan-

guage learner data has focused on intermediate-to-

advanced students of English, particularly in as-

sessment settings. Much less work has been de-

voted to beginners, learners of languages other

than English, or ongoing study over time.

We propose second language acquisition (SLA)

modeling as a new computational task to help

broaden our understanding in this area. First, we

describe a new corpus of language learner data,

containing more than 7.1M words, annotated for

production errors that were made by more than

6.4k learners of English, Spanish, and French, dur-

ing their first 30 days of learning with Duolingo

(a popular online language-learning app).

Then we report on the results of a “shared task”

challenge organized by the authors using this SLA

modeling corpus, which brought together 15 re-

search teams. Our goal for this work is three-

fold: (1) to synthesize years of research in cog-

nitive science, linguistics, and machine learning,

(2) to facilitate cross-dialog among these disci-

plines through a common large-scale empirical

task, and in so doing (3) to shed light on the most

effective approaches to SLA modeling.

2 Shared Task Description

Our learner trace data comes from Duolingo:

a free, award-winning, online language-learning

platform. Since launching in 2012, more than

200 million learners worldwide have enrolled in

Duolingo’s game-like courses, either via the web-

site1 or mobile apps.

Figure 1(a) is a screen-shot of the home screen,

which specifies the game-like curriculum. Each

icon represents a skill, aimed at teaching themati-

cally or grammatically grouped words or concepts.

Learners can tap an icon to access lessons of new

material, or to review material once all lessons are

completed. Learners can also choose to get a per-

sonalized practice session that reviews previously-

learned material from anywhere in the course by

tapping the “practice weak skills” button.

2.1 Corpus Collection

To create the SLA modeling corpus, we sampled

from Duolingo users who registered for a course

and reached at least the tenth row of skill icons

within the month of November 2015. By limit-

ing the data to new users who reach this level of

the course, we hope to better capture beginners’

broader language-learning process, including re-

peated interaction with vocabulary and grammar

1https://www.duolingo.com
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(a) home screen (b) reverse_translate (c) reverse_tap (d) listen

Figure 1: Duolingo screen-shots for an English-speaking student learning French (iPhone app, 2017). (a) The home

screen, where learners can choose to do a “skill” lesson to learn new material, or get a personalized practice session

by tapping the “practice weak skills” button. (b–d) Examples of the three exercise types included in our shared task

experiments, which require the student to construct responses in the language they are learning.

over time. Note that we excluded all learners who

took a placement test to skip ahead in the course,

since these learners are likely more advanced.

2.2 Three Language Tracks

An important question for SLA modeling is: to

what extent does an approach generalize across

languages? While the majority of Duolingo users

learn English—which can significantly improve

job prospects and quality of life (Pinon and Hay-

don, 2010)—Spanish and French are the second

and third most popular courses. To encourage re-

searchers to explore language-agnostic features,

or unified cross-lingual modeling approaches, we

created three tracks: English learners (who speak

Spanish), Spanish learners (who speak English),

and French learners (who speak English).

2.3 Label Prediction Task

The goal of the task is as follows: given a his-

tory of token-level errors made by the learner in

the learning language (L2), accurately predict the

errors they will make in the future. In particular,

we focus on three Duolingo exercise formats that

require the learners to engage in active recall, that

is, they must construct answers in the L2 through

translation or transcription.

Figure 1(b) illustrates a reverse translate item,

where learners are given a prompt in the language

they know (e.g., their L1 or native language), and

learner: wen can help
reference: when can I help ?

label: 7 3 7 3

Figure 2: An illustration of how data labels are gener-

ated. Learner responses are aligned with the most simi-

lar reference answer, and tokens from the reference that

do not match are labeled errors.

translate it into the L2. Figure 1(c) illustrates a re-

verse tap item, which is a simpler version of the

same format: learners construct an answer using a

bank of words and distractors. Figure 1(d) is a lis-

ten item, where learners hear an utterance in the L2

they are learning, and must transcribe it. Duolingo

does include many other exercise formats, but we

focus on these three in the current work, since con-

structing L2 responses through translation or tran-

scription is associated with deeper levels of pro-

cessing, which in turn is more strongly associated

with learning (Craik and Tulving, 1975).

Since each exercise can have multiple correct

answers (due to synonyms, homophones, or ambi-

guities in tense, number, formality, etc.), Duolingo

uses a finite-state machine to align the learner’s re-

sponse to the most similar reference answer form

a large set of acceptable responses, based on token

string edit distance (Levenshtein, 1966). For ex-

ample, Figure 1(b) shows an example of corrective

feedback based on such an alignment.
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Figure 2 shows how we use these alignments to

generate labels for the SLA modeling task. In this

case, an English (from Spanish) learner was asked

to translate, “¿Cuándo puedo ayudar?” and wrote

“wen can help” instead of “When can I help?” This

produces two errors (a typo and a missing pro-

noun). We ignore capitalization, punctuation, and

accents when matching tokens.

2.4 Data Set Format

Sample data from the resulting corpus can be found

in Figure 3. Each token from the reference an-

swer is labeled according to the alignment with the

learner’s response (the final column: 0 for cor-

rect and 1 for incorrect). Tokens are grouped

together by exercise, including user-, exercise-,

and session-level meta-data in the previous line

(marked by the # character). We included all ex-

ercises done by the users sampled from the 30-day

data collection window.

The overall format is inspired by the Universal

Dependencies (UD) format2. Column 1 is a unique

B64-encoded token ID, column 2 is a token (word),

and columns 3–6 are morpho-syntactic features

from the UD tag set (part of speech, morphology

features, and dependency parse labels and edges).

These were generated by processing the aligned

reference answers with Google SyntaxNet (Andor

et al., 2016). Because UD tags are meant to be

language-agnostic, it was our goal to help make

cross-lingual SLA modeling more straightforward

by providing these features.

Exercise meta-data includes the following:

• user: 8-character unique anonymous user ID

for each learner (B64-encoded)

• countries: 2-character ISO country codes

from which this learner has done exercises

• days: number of days since the learner started

learning this language on Duolingo

• client: session device platform

• session: session type (e.g., lesson or practice)

• format: exercise format (see Figure 1)

• time: the time (in seconds) it took the learner

to submit a response for this exercise.

Lesson sessions (about 77% of the data set)

are where new words or concepts are introduced,

although lessons also include previously-learned

material (e.g., each exercise attempts to introduce

only one new word or inflection, so all other to-

kens should have been seen by the student be-

2http://universaldependencies.org

TRAIN DEV TEST

Track Users Tokens (Err) Tokens (Err) Tokens (Err)

English 2.6k 2.6M (13%) 387k (14%) 387k (15%)

Spanish 2.6k 2.0M (14%) 289k (16%) 282k (16%)

French 1.2k 927k (16%) 138k (18%) 136k (18%)

Overall 6.4k 5.5M (14%) 814k (15%) 804k (16%)

Table 1: Summary of the SLA modeling data set.
.

fore). Practice sessions (22%) should contain only

previously-seen words and concepts. Test sessions

(1%) are mini-quizzes that allow a student to skip

out of a single skill in the curriculum (i.e., the stu-

dent may have never seen this content before in the

Duolingo app, but may well have had prior knowl-

edge before starting the course).

It is worth mentioning that for the shared task,

we did not provide actual learner responses, only

the closest reference answers. Releasing such data

(at least in the TEST set) would by definition give

away the labels and might undermine the task.

However, we plan to release a future version of the

corpus that is enhanced with additional meta-data,

including the actual learner responses.

2.5 Challenge Timeline

The data were released in two phases. In phase 1

(8 weeks), TRAIN and DEV partitions were re-

leased with labels, along with a baseline system

and evaluation script, for system development. In

phase 2 (10 days), the TEST partition was released

without labels, and teams submitted predictions to

CodaLab3 for blind evaluation. To allow teams to

compare different system parameters or features,

they were allowed to submit up to 10 predictions

total (up to 2 per day) during this phase.

Table 1 reports summary statistics for each of

the data partitions for all three tracks. We created

TRAIN, DEV, and TEST partitions as follows. For

each user, the first 80% of their exercises were

placed in the TRAIN set, the subsequent 10% in

DEV, and the final 10% in TEST. Hence the three

data partitions are sequential, and contain ordered

observations for all users.

Note that because the three data partitions are

sequential, and the DEV set contains observations

that are potentially valuable for making TEST

set predictions, most teams opted to combine the

TRAIN and DEV sets to train their systems in fi-

nal phase 2 evaluations.

3http://codalab.org
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# user:XEinXf5+ countries:CO days:2.678 client:web session:practice format:reverse_translate time:6
oMGsnnH/0101 When ADV PronType=Int|fPOS=ADV++WRB advmod 4 1
oMGsnnH/0102 can AUX VerbForm=Fin|fPOS=AUX++MD aux 4 0
oMGsnnH/0103 I PRON Case=Nom|Number=Sing|Person=1|PronType=Prs|fPOS=PRON++PRP nsubj 4 1
oMGsnnH/0104 help VERB VerbForm=Inf|fPOS=VERB++VB ROOT 0 0

# user:XEinXf5+ countries:CO days:5.707 client:android session:practice format:reverse_translate time:22
W+QU2fm70301 He PRON Case=Nom|Gender=Masc|Number=Sing|Person=3|PronType=Prs|fPOS=PRON++PRP nsubj 3 0
W+QU2fm70302 's AUX Mood=Ind|Number=Sing|Person=3|Tense=Pres|VerbForm=Fin|fPOS=AUX++VBZ aux 3 1
W+QU2fm70303 wearing VERB Tense=Pres|VerbForm=Part|fPOS=VERB++VBG ROOT 0 0
W+QU2fm70304 two NUM NumType=Card|fPOS=NUM++CD nummod 5 0
W+QU2fm70305 shirts NOUN Number=Plur|fPOS=NOUN++NNS dobj 3 0

# user:XEinXf5+ countries:CO days:10.302 client:web session:lesson format:reverse_translate time:28
vOeGrMgP0101 We PRON Case=Nom|Number=Plur|Person=1|PronType=Prs|fPOS=PRON++PRP nsubj 2 0
vOeGrMgP0102 eat VERB Mood=Ind|Tense=Pres|VerbForm=Fin|fPOS=VERB++VBP ROOT 0 1
vOeGrMgP0103 cheese NOUN Degree=Pos|fPOS=ADJ++JJ dobj 2 1
vOeGrMgP0104 and CONJ fPOS=CONJ++CC cc 2 0
vOeGrMgP0105 they PRON Case=Nom|Number=Plur|Person=3|PronType=Prs|fPOS=PRON++PRP nsubj 6 0
vOeGrMgP0106 eat VERB Mood=Ind|Tense=Pres|VerbForm=Fin|fPOS=VERB++VBP conj 2 1
vOeGrMgP0107 fish NOUN fPOS=X++FW dobj 6 0

Figure 3: Sample exercise data from an English learner over time: roughly two, five, and ten days into the course.

2.6 Evaluation

We use area under the ROC curve (AUC) as

the primary evaluation metric for SLA model-

ing (Fawcett, 2006). AUC is a commonmeasure of

ranking quality in classification tasks, and can be

interpreted as the probability that the system will

rank a randomly-chosen error above a randomly-

chosen non-error. We argue that this notion of

ranking quality is particularly useful for evaluating

systems that might be used for personalized learn-

ing, e.g., if we wish to prioritize words or exer-

cises for an individual learner’s review based on

how likely they are to have forgotten or make er-

rors at a given point in time.

We also report F1 score—the harmonic mean of

precision and recall—as a secondary metric, since

it is more common in similar skewed-class label-

ing tasks (e.g., Ng et al., 2013). Note, however,

that F1 can be significantly improved simply by

tuning the classification threshold (fixed at 0.5 for

our evaluations) without affecting AUC.

3 Results

A total of 15 teams participated in the task, of

which 13 responded to a brief survey about their

approach, and 11 submitted system description pa-

pers. All but two of these teams submitted predic-

tions for all three language tracks.

Official shared task results are reported in Ta-

ble 2. System ranks are determined by sorting

teams according to AUC, and using DeLong’s test

(DeLong et al., 1988) to identify statistical ties.

For the remainder of this section, we provide a

summary of each team’s approach, ordered by the

team’s average rank across all three tracks. Certain

teams are marked with modeling choice indicators

(♢, ♣, ‡), which we discuss further in §5.
SanaLabs (Nilsson et al., 2018) used a combi-

nation of recurrent neural network (RNN) predic-

tions with those of a Gradient Boosted Decision

Tree (GBDT) ensemble, trained independently for

each track. This was motivated by the observa-

tion that RNNs work well for sequence data, while

GBDTs are often the best-performing non-neural

model for shared tasks using tabular data. They

also engineered several token context features, and

learner/token history features such as number of

times seen, time since last practice, etc.

singsound (Xu et al., 2018) used an RNN ar-

chitecture using four types of encoders, represent-

ing different types of features: token context, lin-

guistic information, user data, and exercise for-

mat. The RNN decoder integrated information

from all four encoders. Ablation experiments re-

vealed the context encoder (representing the token)

contributed the most to model performance, while

the linguistic encoder (representing grammatical

information) contributed the least.

NYU (Rich et al., 2018) used an ensemble of

GBDTs with features engineered based on psy-

chological theories of cognition. Predictions for

each track were averaged between a track-specific

model and a unifiedmodel (trained on data from all

three tracks). In addition to the word, user, and ex-

ercise features provided, the authors includedword

lemmas, corpus frequency, L1-L2 cognates, and

features indicating user motivation and diligence

(derived from usage patterns), and others. Abla-

tion studies indicated that most of the performance

was due to the user and token features.
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English Track

↑ Team AUC F1

1 SanaLabs ♢♣ .861 .561

1 singsound ♢ .861 .559

3 NYU ♣‡ .859 .468

4 TMU ♢‡ .848 .476

5 CECL ‡ .846 .414

6 Cambridge ♢ .841 .479

7 UCSD ♣ .829 .424

8 nihalnayak .821 .376

8 LambdaLab ♣ .821 .389

10 Grotoco .817 .462

11 jilljenn .815 .329

12 ymatusevych .813 .381

13 renhk .797 .448

14 zlb241 .787 .003

15 SLAM_baseline .774 .190

Spanish Track

↑ Team AUC F1

1 SanaLabs ♢♣ .838 .530

2 NYU ♣‡ .835 .420

2 singsound ♢ .835 .524

4 TMU ♢‡ .824 .439

5 CECL ‡ .818 .390

6 Cambridge ♢ .807 .435

7 UCSD ♣ .803 .375

7 LambdaLab ♣ .801 .344

9 Grotoco .791 .452

9 nihalnayak .790 .338

11 ymatusevych .789 .347

11 jilljenn .788 .306

13 renhk .773 .432

14 SLAM_baseline .746 .175

15 zlb241 .682 .389

French Track

↑ Team AUC F1

1 SanaLabs ♢♣ .857 .573

2 singsound ♢ .854 .569

2 NYU ♣‡ .854 .493

4 CECL ‡ .843 .487

5 TMU ♢‡ .839 .502

6 Cambridge ♢ .835 .508

7 UCSD ♣ .823 .442

8 LambdaLab ♣ .815 .415

8 Grotoco .813 .502

10 nihalnayak .811 .431

10 jilljenn .809 .406

10 ymatusevych .808 .441

13 simplelinear .807 .394

14 renhk .796 .481

15 SLAM_baseline .771 .281

Table 2: Final results. Ranks (↑) are determined by statistical ties (see text). Markers indicate which systems

include recurrent neural architectures (♢), decision tree ensembles (♣), or a multitask model across all tracks (‡).

TMU (Kaneko et al., 2018) used a combination

of two bidirectional RNNs—the first to predict po-

tential user errors at a given token, and a second to

track the history of previous answers by each user.

These networks were jointly trained through a uni-

fied objective function. The authors did not engi-

neer any additional features, but did train a single

model for all three tracks (using a track ID feature

to distinguish among them).

CECL (Bestgen, 2018) used a logistic regres-

sion approach. The base feature set was expanded

to include many feature conjunctions, including

word n-grams crossed with the token, user, format,
and session features provided with the data set.

Cambridge (Yuan, 2018) trained two RNNs—

a sequence labeler, and a sequence-to-sequence

model taking into account previous answers—and

found that averaging their predictions yielded the

best results. They focused on the English track, ex-

perimenting with additional features derived from

other English learner corpora. Hyper-parameters

were tuned for English and used as-is for other

tracks, with comparable results.

UCSD (Tomoschuk and Lovelett, 2018) used a

random forest classifier with a set of engineered

features motivated by previous research in mem-

ory and linguistic effects in SLA, including “word

neighborhoods,” corpus frequency, cognates, and

repetition/experience with a given word. The sys-

tem also included features specific to each user,

such as mean and variance of error rates.

LambdaLab (Chen et al., 2018) used GBDT

models independently for each track, deriv-

ing their features from confirmatory analysis

of psychologically-motivated hypotheses on the

TRAIN set. These include proxies for student en-

gagement, spacing effect, response time, etc.

nihalnayak (Nayak and Rao, 2018) used a lo-

gistic regression model similar to the baseline,

but added features inspired by research in code-

mixed language-learning where context plays an

important role. In particular, they included word,

part of speech, and metaphone features for previ-

ous:current and current:next token pairs.

Grotoco (Klerke et al., 2018) also used logis-

tic regression, including word lemmas, frequency,

cognates, and user-specific features such as word

error rate. Interestingly, the authors found that ig-

noring each user’s first day of exercise data im-

proved their predictions, suggesting that learners

first needed to familiarize themselves with app be-

fore their data were reliable for modeling.

jilljenn (Vie, 2018) used a deep factorization

machine (DeepFM), a neural architecture devel-

oped for click-through rate prediction in recom-

mender systems. This model allows learning from

both lower-order and higher-order induced fea-

tures and their interactions. The DeepFM outper-

formed a simple logistic regression baseline with-

out much additional feature engineering.

Other teams did not submit system description

papers. However, according to a task organizer

survey ymatusevych used a linear model with

multilingual word embeddings, corpus frequency,

and several L1-L2 features such as cognates. Ad-

ditionally, simplelinear used an ensemble of some

sort (for the French track only). renhk and zlb241

provided no details about their systems.
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SLAM_baseline is the baseline system pro-

vided by the task organizers. It is a simple logis-

tic regression using data set features, trained sepa-

rately for each track using stochastic gradient de-

scent on the TRAIN set only.

4 Related Work

SLA modeling is a rich problem, and presents a

opportunity to synthesize work from various sub-

fields in cognitive science, linguistics, and ma-

chine learning. This section highlights a few key

concepts from these fields, and how they relate to

the approaches taken by shared task participants.

Item response theory (IRT) is a common psy-

chometric modeling approach used in educational

software (e.g., Chen et al., 2005). In its simplest

form (Rasch, 1980), an IRT model is a logistic re-

gression with two weights: one representing the

learner’s ability (i.e., user ID), and the other rep-

resenting the difficulty of the exercise or test item

(i.e., token ID). An extension of this idea is the ad-

ditive factor model (Cen et al., 2008) which adds

additional “knowledge components” (e.g., lexical,

morphological, or syntactic features). Teams that

employed linear models (including our baseline)

are essentially all additive factor IRT models.

For decades, tutoring systems have also em-

ployed sequence models like HMMs to perform

knowledge tracing (Corbett and Anderson, 1995),

a way of estimating a learner’s mastery of knowl-

edge over time. RNN-based approaches that en-

code user performance over time (i.e., that span

across exercises) are therefore variants of deep

knowledge tracing (Piech et al., 2015).

Relatedly, the spacing effect (Dempster, 1989)

is the observation that people will not only learn

but also forget over time, and they remember more

effectively through scheduled practices that are

spaced out. Settles and Meeder (2016) and Ridge-

way et al. (2017) recently proposed non-linear re-

gressions that explicitly encode the rate of forget-

ting as part of a decision surface, however none of

the current teams chose to do this. Instead, forget-

ting was either modeled through engineered fea-

tures (e.g., user/token histories), or opaquely han-

dled by sequential RNN architectures.

SLA modeling also bears some similarity to re-

search in grammatical error detection (Leacock

et al., 2010) and correction (Ng et al., 2013). For

these tasks, amodel is given a (possibly ill-formed)

sequence of words produced by a learner, and

the task is to identify which are mistakes. SLA

modeling is in some sense the opposite: given

a well-formed sequence of words that a learner

should be able to produce, identify where they are

likely to makemistakes. Given these similarities, a

few teams adapted state-of-the-art GEC/GED ap-

proaches to create their SLA modeling systems.

Finally,multitask learning (e.g., Caruana, 1997)

is the idea that machine learning systems can do

better at multiple related tasks by trying to solve

them simultaneously. For example, recent work

in machine translation has demonstrated gains

through learning to translate multiple languages

with a unified model (Dong et al., 2015). Simi-

larly, the three language tracks in this work pre-

sented an opportunity to explore a unified multi-

task framework, which a few teams did with posi-

tive results.

5 Meta-Analyses

In this section, we analyze the various modeling

choices explored by the different teams in order to

shed light on what kinds of algorithmic and feature

engineering decisions appear to be useful for the

SLA modeling task.

5.1 Learning Algorithms

Here we attempt to answer the question of whether

particular machine learning algorithms have a sig-

nificant impact on task performance. For example,

the results in Table 2 suggest that the algorithmic

choices indicated by (♢, ♣, ‡) are particularly ef-
fective. Is this actually the case?

To answer this question, we partitioned the

TEST set into 6.4k subsets (one for each learner),

and computed per-user AUC scores for each

team’s predictions (83.9k observations total). We

also coded each team with indicator variables to

describe their algorithmic approach, and used a re-

gression analysis to determine if these algorithmic

variations had any significant effects on learner-

specific AUC scores.

To analyze this properly, however, we need to

determine whether the differences among model-

ing choices are actually meaningful, or can simply

be explained by sampling error due to random vari-

ations among users, teams, or tracks. To do this,

we use a linear mixed-effects model (cf., Baayen,

2008, Ch. 7). In addition to modeling the fixed

effects of the various learning algorithms, we can

also model the random effects represented by the
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Fixed effects (algorithm choices) Effect p-value

Intercept .786 <.001 ***

Recurrent neural network (♢) +.028 .012 *

Decision tree ensemble (♣) +.018 .055 .

Linear model (e.g., IRT) −.006 .541

Multitask model (‡) +.023 .017 *

Random effects St. Dev.

User ID ±.086

Team ID ±.013

Track ID ±.011

Table 3: Mixed-effects analysis of learning algorithms.

user ID (learners may vary by ability), the team ID

(teams may differ in other aspects not captured by

our schema, e.g., the hardware used), and the track

ID (tracks may vary inherently in difficulty).

Table 3 presents a mixed-effects analysis for the

algorithm variations used by at least 3 teams. The

intercept can be interpreted as the “average” AUC

of .786. Controlling for the random effects of user

(which exhibits a wide standard deviation of±.086

AUC), team (±.013), and track (±.011), three of

the algorithmic choices are at least marginally sig-

nificant (p < .1). For example, we might expect

a system that uses RNNs to model learner mas-

tery over time would add+.028 to learner-specific

AUC (all else being equal). Note that most teams’

systems that were not based on RNNs or tree en-

sembles used logistic regression, hence the “linear

model” effect is negligible (effectively treated as a

control condition in the analysis).

These results suggest two key insights for SLA

modeling. First, non-linear algorithms are particu-

larly desirable4, and second,multitask learning ap-

proaches that share information across tracks (i.e.,

languages) are also effective.

5.2 Feature Sets

We would also like to get a sense of which fea-

tures, if any, significantly affect system perfor-

mance. Table 4 lists features provided with the

SLA modeling data set, as well as several newly-

engineered feature types that were employed by at

least three teams (note that the precise details may

vary from team to team, but in our view aim to cap-

4 Interestingly, the only linear model to rank among the

top 5 (CECL) relied on combinatorial feature conjunctions—

which effectively alter the decision surface to be non-linear

with respect to the original features. The RNN hidden nodes

and GBDT constituent trees from other top systems may in

fact be learning to represent these same feature conjunctions.

Features used Popularity Effect

Word (surface form) +.005

User ID +.014

Part of speech −.008

Dependency labels −.011

Morphology features −.021

Response time +.028 *

Days in course +.023 .

Client +.005

Countries +.012

Dependency edges −.000

Session +.014

Word corpus frequency +.008

Spaced repetition features +.013

L1-L2 cognates +.001

Word embeddings +.020

Word stem/root/lemma +.007

Table 4: Summary of system features—both provided

(top) and team-engineered (bottom)—with team popu-

larity and univariate mixed-effects estimates.
.

ture the same phenomena). We also include each

feature’s popularity and an effect estimate5.

Broadly speaking, results suggest that feature

engineering had a much smaller impact on system

performance than the choice of learning algorithm.

Only “response time” and “days in course” showed

even marginally significant trends.

Of particular interest is the observation that

morpho-syntactic features (described in §2.4) ac-
tually seem to have weakly negative effects. This

echoes singsound’s finding that their linguistic en-

coder contributed the least to system performance,

andCambridge determined through ablation stud-

ies that these features in fact hurt their system. One

reasonable explanation is that these automatically-

generated features contain too many systematic

parsing errors to provide value. (Note that NYU

artificially introduced punctuation to the exercises

and re-parsed the data in their work.)

As for newly-engineered features, word infor-

mation such as frequency, semantic embeddings,

and stemming were popular. It may be that these

features showed such little return because our cor-

pus was too biased toward beginners—thus rep-

resenting a very narrow sample of language—for

these features to be meaningful. Cognate features

were an interesting idea used by a few teams, and

may have been more useful if the data included

5This is similar to the analysis in §5.1, except that we
regress on each feature separately. That is, a feature is the

only fixed effect in the model (alongside intercept), while still

controlling for user, team, and track random effects.

62



users from a wider variety of different L1 lan-

guage backgrounds. Spaced repetition features

also exhibited marginal (but statistically insignif-

icant) gains. We posit that the 30-day window

we used for data collection was simply not long

enough for these features to capture more long-

term learning (and forgetting) trends.

5.3 Ensemble Analysis

Another interesting research question is: what is

the upper-bound for this task? This can be esti-

mated by treating each team’s best submission as

an independent system, and combining the results

using ensemblemethods in a variety of ways. Such

analyses have been previously applied to other

shared task challenges and meta-analyses (e.g.,

Malmasi et al., 2017).

The oracle system is meant to be an upper-

bound: for each token in the TEST set, the oracle

outputs the team prediction with the lowest error

for that particular token. We also experiment with

stacking (Wolpert, 1992) by training a logistic re-

gression classifier using each team’s prediction as

an input feature6. Finally, we also pool system pre-

dictions together by taking their average (mean).

Table 5 reports AUC for various ensemblemeth-

ods as well as some of the top performing team sys-

tems for all three tracks. Interestingly, the oracle

is exceptionally accurate (>.993 AUC and >.884

F1, not shown). This indicates that the potential

upper limit of performance on this task is quite

high, since there exists a near-perfect ranking of

tokens in the TEST set based only on predictions

from these 15 diverse participating teams.

The stacking classifier produces significantly

better rankings than any of the constituent sys-

tems alone, while the average (over all teams)

ranked between the 3rd and 4th best system in all

three tracks. Inspection of stacking model weights

revealed that it largely learned to trust the top-

performing systems, so we also tried simply av-

eraging the top 3 systems for each track, and this

method was statistically tied with stacking for the

English and French tracks (p = 0.002 for Spanish).

Interestingly, the highest-weighted team in each

track’s stacking model was singsound (+2.417

on average across the three models), followed

6Note that we only have TEST set predictions for each

team. While we averaged stacking classifier weights across

10 folds using cross-validation, the reported AUC is still

likely an over-estimate, since the models were in some sense

trained on the TEST set.

System English Spanish French

Oracle .995 .996 .993

Stacking .867 .844 .863

Average (top 3) .867 .843 .863

1st team .861 .838 .857

2nd team .861 .835 .854

3rd team .859 .835 .854

Average (all) .857 .832 .852

4th team .848 .824 .843

Table 5: AUC results for the ensemble analysis.

by NYU (+1.632), whereas the top-performing

team SanaLabs had a surprisingly lower weight

(+0.841). This could be due to the fact that their

system was itself an ensemble of an RNN and

GBDT models, which were used (in isolation) by

each of the other two teams. This seems to add

further support for the effectiveness of combining

these algorithms for the task.

6 Conclusion and Future Work

In this work, we presented the task of second

language acquisition (SLA) modeling, described a

large data set for studying this task, and reported on

the results of a shared task challenge that explored

this new domain. The task attracted strong par-

ticipation from 15 teams, who represented a wide

variety of fields including cognitive science, lin-

guistics, and machine learning.

Among our key findings is the observation that,

for this particular formulation of the task, the

choice of learning algorithm appears to be more

important than clever feature engineering. In par-

ticular, the most effective teams employed se-

quence models (e.g., RNNs) that can capture user

performance over time, and tree ensembles (e.g.,

GBDTs) that can capture non-linear relationships

among features. Furthermore, using a multitask

framework—in this case, a unified model that

leverages data from all three language tracks—can

provide further improvements.

Still, many teams opted for a simpler algo-

rithm (e.g., logistic regression) and concentrated

instead on more psychologically-motivated fea-

tures. While these teams did not always perform as

well, several demonstrated through ablation stud-

ies that these features can be useful within the lim-

itations of the algorithm. It is possible that the

constraints of the SLAmodeling data set (beginner

language, homogeneous L1 language background,

short 30-day time frame, etc.) prevented these

features from being more useful across different
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teams and learning algorithms. It would be inter-

esting to revisit these ideas using a more diverse

and longitudinal data set in the future.

To support ongoing research in SLA mod-

eling, current and future releases of our data

set will be publicly maintained online at:

https://doi.org/10.7910/DVN/8SWHNO.
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