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Abstract

We present half-life regression (HLR), a
novel model for spaced repetition practice
with applications to second language ac-
quisition. HLR combines psycholinguis-
tic theory with modern machine learning
techniques, indirectly estimating the “half-
life” of a word or concept in a student’s
long-term memory. We use data from
Duolingo — a popular online language
learning application — to fit HLR models,
reducing error by 45%+ compared to sev-
eral baselines at predicting student recall
rates. HLR model weights also shed light
on which linguistic concepts are system-
atically challenging for second language
learners. Finally, HLR was able to im-
prove Duolingo daily student engagement
by 12% in an operational user study.

1 Introduction

The spacing effect is the observation that people
tend to remember things more effectively if they
use spaced repetition practice (short study periods
spread out over time) as opposed to massed prac-
tice (i.e., “cramming”). The phenomenon was first
documented by Ebbinghaus (1885), using himself
as a subject in several experiments to memorize
verbal utterances. In one study, after a day of
cramming he could accurately recite 12-syllable
sequences (of gibberish, apparently). However,
he could achieve comparable results with half as
many practices spread out over three days.

The lag effect (Melton, 1970) is the related ob-
servation that people learn even better if the spac-
ing between practices gradually increases. For ex-
ample, a learning schedule might begin with re-
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view sessions a few seconds apart, then minutes,
then hours, days, months, and so on, with each
successive review stretching out over a longer and
longer time interval.

The effects of spacing and lag are well-
established in second language acquisition re-
search (Atkinson, 1972; Bloom and Shuell, 1981;
Cepeda et al., 2006; Pavlik Jr and Anderson,
2008), and benefits have also been shown for gym-
nastics, baseball pitching, video games, and many
other skills. See Ruth (1928), Dempster (1989),
and Donovan and Radosevich (1999) for thorough
meta-analyses spanning several decades.

Most practical algorithms for spaced repetition
are simple functions with a few hand-picked pa-
rameters. This is reasonable, since they were
largely developed during the 1960s–80s, when
people would have had to manage practice sched-
ules without the aid of computers. However, the
recent popularity of large-scale online learning
software makes it possible to collect vast amounts
of parallel student data, which can be used to em-
pirically train richer statistical models.

In this work, we propose half-life regression
(HLR) as a trainable spaced repetition algorithm,
marrying psycholinguistically-inspired models of
memory with modern machine learning tech-
niques. We apply this model to real student learn-
ing data from Duolingo, a popular language learn-
ing app, and use it to improve its large-scale, op-
erational, personalized learning system.

2 Duolingo

Duolingo is a free, award-winning, online lan-
guage learning platform. Since launching in 2012,
more than 150 million students from all over the
world have enrolled in a Duolingo course, either
via the website1 or mobile apps for Android, iOS,

1https://www.duolingo.com
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(a) skill tree screen (b) skill screen (c) correct response (d) incorrect response

Figure 1: Duolingo screenshots for an English-speaking student learning French (iPhone app, 2016).
(a) A course skill tree: golden skills have four bars and are “at full strength,” while other skills have
fewer bars and are due for practice. (b) A skill screen detail (for the Gerund skill), showing which words
are predicted to need practice. (c,d) Grading and explanations for a translation exercise.

étant un enfant il est petit
être.V.GER un.DET.INDF.M.SG enfant.N.SG il.PN.M.P3.SG être.V.PRES.P3.SG petit.ADJ.M.SG

Figure 2: The French sentence from Figure 1(c,d) and its lexeme tags. Tags encode the root lexeme, part
of speech, and morphological components (tense, gender, person, etc.) for each word in the exercise.

and Windows devices. For comparison, that is
more than the total number of students in U.S. el-
ementary and secondary schools combined. At
least 80 language courses are currently available
or under development2 for the Duolingo platform.
The most popular courses are for learning English,
Spanish, French, and German, although there are
also courses for minority languages (Irish Gaelic),
and even constructed languages (Esperanto).

More than half of Duolingo students live in
developing countries, where Internet access has
more than tripled in the past three years (ITU and
UNESCO, 2015). The majority of these students
are using Duolingo to learn English, which can
significantly improve their job prospects and qual-
ity of life (Pinon and Haydon, 2010).

2.1 System Overview
Duolingo uses a playfully illustrated, gamified de-
sign that combines point-reward incentives with
implicit instruction (DeKeyser, 2008), mastery
learning (Block et al., 1971), explanations (Fahy,

2https://incubator.duolingo.com

2004), and other best practices. Early research
suggests that 34 hours of Duolingo is equivalent
to a full semester of university-level Spanish in-
struction (Vesselinov and Grego, 2012).

Figure 1(a) shows an example skill tree for
English speakers learning French. This specifies
the game-like curriculum: each icon represents
a skill, which in turn teaches a set of themati-
cally or grammatically related words or concepts.
Students tap an icon to access lessons of new
material, or to practice previously-learned mate-
rial. Figure 1(b) shows a screen for the French
skill Gerund, which teaches common gerund verb
forms such as faisant (doing) and étant (being).
This skill, as well as several others, have already
been completed by the student. However, the Mea-
sures skill in the bottom right of Figure 1(a) has
one lesson remaining. After completing each row
of skills, students “unlock” the next row of more
advanced skills. This is a gamelike implementa-
tion of mastery learning, whereby students must
reach a certain level of prerequisite knowledge be-
fore moving on to new material.
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Each language course also contains a corpus
(large database of available exercises) and a lex-
eme tagger (statistical NLP pipeline for automat-
ically tagging and indexing the corpus; see the
Appendix for details and a lexeme tag reference).
Figure 1(c,d) shows an example translation exer-
cise that might appear in the Gerund skill, and Fig-
ure 2 shows the lexeme tagger output for this sen-
tence. Since this exercise is indexed with a gerund
lexeme tag (être.V.GER in this case), it is available
for lessons or practices in this skill.

The lexeme tagger also helps to provide correc-
tive feedback. Educational researchers maintain
that incorrect answers should be accompanied by
explanations, not simply a “wrong” mark (Fahy,
2004). In Figure 1(d), the student incorrectly used
the 2nd-person verb form es (être.V.PRES.P2.SG)
instead of the 3rd-person est (être.V.PRES.P3.SG).
If Duolingo is able to parse the student response
and detect a known grammatical mistake such as
this, it provides an explanation3 in plain language.
Each lesson continues until the student masters all
of the target words being taught in the session, as
estimated by a mixture model of short-term learn-
ing curves (Streeter, 2015).

2.2 Spaced Repetition and Practice

Once a lesson is completed, all the target words
being taught in the lesson are added to the student
model. This model captures what the student has
learned, and estimates how well she can recall this
knowledge at any given time. Spaced repetition is
a key component of the student model: over time,
the strength of a skill will decay in the student’s
long-term memory, and this model helps the stu-
dent manage her practice schedule.

Duolingo uses strength meters to visualize the
student model, as seen beneath each of the com-
pleted skill icons in Figure 1(a). These meters
represent the average probability that the student
can, at any moment, correctly recall a random tar-
get word from the lessons in this skill (more on
this probability estimate in §3.3). At four bars, the
skill is “golden” and considered fresh in the stu-
dent’s memory. At fewer bars, the skill has grown
stale and may need practice. A student can tap the
skill icon to access practice sessions and target her
weakest words. For example, Figure 1(b) shows

3If Duolingo cannot parse the precise nature of the mis-
take — e.g., because of a gross typographical error — it pro-
vides a “diff” of the student’s response with the closest ac-
ceptable answer in the corpus (using Levenshtein distance).

some weak words from the Gerund skill. Practice
sessions are identical to lessons, except that the
exercises are taken from those indexed with words
(lexeme tags) due for practice according to student
model. As time passes, strength meters continu-
ously update and decay until the student practices.

3 Spaced Repetition Models

In this section, we describe several spaced repeti-
tion algorithms that might be incorporated into our
student model. We begin with two common, estab-
lished methods in language learning technology,
and then present our half-life regression model
which is a generalization of them.

3.1 The Pimsleur Method
Pimsleur (1967) was perhaps the first to make
mainstream practical use of the spacing and lag ef-
fects, with his audio-based language learning pro-
gram (now a franchise by Simon & Schuster). He
referred to his method as graduated-interval re-
call, whereby new vocabulary is introduced and
then tested at exponentially increasing intervals,
interspersed with the introduction or review of
other vocabulary. However, this approach is lim-
ited since the schedule is pre-recorded and can-
not adapt to the learner’s actual ability. Consider
an English-speaking French student who easily
learns a cognate like pantalon (pants), but strug-
gles to remember manteau (coat). With the Pim-
sleur method, she is forced to practice both words
at the same fixed, increasing schedule.

3.2 The Leitner System
Leitner (1972) proposed a different spaced repeti-
tion algorithm intended for use with flashcards. It
is more adaptive than Pimsleur’s, since the spac-
ing intervals can increase or decrease depending
on student performance. Figure 3 illustrates a pop-
ular variant of this method.

1 2 4 8 16

correctly-remembered cards

incorrectly-remembered cards

Figure 3: The Leitner System for flashcards.

The main idea is to have a few boxes that corre-
spond to different practice intervals: 1-day, 2-day,
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4-day, and so on. All cards start out in the 1-day
box, and if the student can remember an item after
one day, it gets “promoted” to the 2-day box. Two
days later, if she remembers it again, it gets pro-
moted to the 4-day box, etc. Conversely, if she is
incorrect, the card gets “demoted” to a shorter in-
terval box. Using this approach, the hypothetical
French student from §3.1 would quickly promote
pantalon to a less frequent practice schedule, but
continue reviewing manteau often until she can
regularly remember it.

Several electronic flashcard programs use the
Leitner system to schedule practice, by organiz-
ing items into “virtual” boxes. In fact, when it first
launched, Duolingo used a variant similar to Fig-
ure 3 to manage skill meter decay and practice.
The present research was motivated by the need
for a more accurate model, in response to student
complaints that the Leitner-based skill meters did
not adequately reflect what they had learned.

3.3 Half-Life Regression: A New Approach

We now describe half-life regression (HLR), start-
ing from psychological theory and combining it
with modern machine learning techniques.

Central to the theory of memory is the Ebbing-
haus model, also known as the forgetting curve
(Ebbinghaus, 1885). This posits that memory de-
cays exponentially over time:

p = 2−∆/h . (1)

In this equation, p denotes the probability of cor-
rectly recalling an item (e.g., a word), which is
a function of ∆, the lag time since the item was
last practiced, and h, the half-life or measure of
strength in the learner’s long-term memory.

Figure 4(a) shows a forgetting curve (1) with
half-life h = 1. Consider the following cases:

1. ∆ = 0. The word was just recently practiced,
so p = 20 = 1.0, conforming to the idea that
it is fresh in memory and should be recalled
correctly regardless of half-life.

2. ∆ = h. The lag time is equal to the half-life,
so p = 2−1 = 0.5, and the student is on the
verge of being unable to remember.

3. ∆� h. The word has not been practiced for
a long time relative to its half-life, so it has
probably been forgotten, e.g., p ≈ 0.

Let x denote a feature vector that summarizes
a student’s previous exposure to a particular word,
and let the parameter vector Θ contain weights that
correspond to each feature variable in x. Under
the assumption that half-life should increase expo-
nentially with each repeated exposure (a common
practice in spacing and lag effect research), we let
ĥΘ denote the estimated half-life, given by:

ĥΘ = 2Θ·x . (2)

In fact, the Pimsleur and Leitner algorithms can
be interpreted as special cases of (2) using a few
fixed, hand-picked weights. See the Appendix for
the derivation of Θ for these two methods.

For our purposes, however, we want to fit Θ em-
pirically to learning trace data, and accommodate
an arbitrarily large set of interesting features (we
discuss these features more in §3.4). Suppose we
have a data set D = {〈p,∆,x〉i}Di=1 made up of
student-word practice sessions. Each data instance
consists of the observed recall rate p4, lag time ∆
since the word was last seen, and a feature vector
x designed to help personalize the learning expe-
rience. Our goal is to find the best model weights
Θ∗ to minimize some loss function `:

Θ∗ = arg min
Θ

D∑
i=1

`(〈p,∆,x〉i; Θ) . (3)

To illustrate, Figure 4(b) shows a student-word
learning trace over the course of a month. Each
6 indicates a data instance: the vertical position is
the observed recall rate p for each practice session,
and the horizontal distance between points is the
lag time ∆ between sessions. Combining (1) and
(2), the model prediction p̂Θ = 2−∆/ĥΘ is plot-
ted as a dashed line over time (which resets to 1.0
after each exposure, since ∆ = 0). The training
loss function (3) aims to fit the predicted forget-
ting curves to observed data points for millions of
student-word learning traces like this one.

We chose the L2-regularized squared loss func-
tion, which in its basic form is given by:

`(6; Θ) = (p− p̂Θ)2 + λ‖Θ‖22 ,
where 6 = 〈p,∆,x〉 is shorthand for the training
data instance, and λ is a parameter to control the
regularization term and help prevent overfitting.

4In our setting, each data instance represents a full lession
or practice session, which may include multiple exercises re-
viewing the same word. Thus p represents the proportion of
times a word was recalled correctly in a particular session.
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(a) Ebbinghaus model (h = 1)
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(b) 30-day student-word learning trace and predicted forgetting curve

Figure 4: Forgetting curves. (a) Predicted recall rate as a function of lag time ∆ and half-life h = 1.
(b) Example student-word learning trace over 30 days: 6 marks the observed recall rate p for each
practice session, and half-life regression aims to fit model predictions p̂Θ (dashed lines) to these points.

In practice, we found it useful to optimize for
the half-life h in addition to the observed recall
rate p. Since we do not know the “true” half-life
of a given word in the student’s memory — this
is a hypothetical construct — we approximate it
algebraically from (1) using p and ∆. We solve
for h = −∆

log2(p) and use the final loss function:

`(6; Θ) = (p− p̂Θ)2 + α(h− ĥΘ)2 + λ‖Θ‖22 ,
where α is a parameter to control the relative im-
portance of the half-life term in the overall train-
ing objective function. Since ` is smooth with re-
spect to Θ, we can fit the weights to student-word
learning traces using gradient descent. See the Ap-
pendix for more details on our training and opti-
mization procedures.

3.4 Feature Sets
In this work, we focused on features that were eas-
ily instrumented and available in the production
Duolingo system, without adding latency to the
student’s user experience. These features fall into
two broad categories:

• Interaction features: a set of counters sum-
marizing each student’s practice history with
each word (lexeme tag). These include the
total number of times a student has seen the
word xn, the number of times it was correctly
recalled x⊕, and the number of times incor-
rect x	. These are intended to help the model
make more personalized predictions.

• Lexeme tag features: a large, sparse set of
indicator variables, one for each lexeme tag
in the system (about 20k in total). These are
intended to capture the inherent difficulty of
each particular word (lexeme tag).

recall rate lag (days) feature vector x
p (⊕/n) ∆ xn x⊕ x	 xêtre.V.GER

1.0 (3/3) 0.6 3 2 1 1
0.5 (2/4) 1.7 6 5 1 1
1.0 (3/3) 0.7 10 7 3 1
0.8 (4/5) 4.7 13 10 3 1
0.5 (1/2) 13.5 18 14 4 1
1.0 (3/3) 2.6 20 15 5 1

Table 1: Example training instances. Each row
corresponds to a data point in Figure 4(b) above,
which is for a student learning the French word
étant (lexeme tag être.V.GER).

To be more concrete, imagine that the trace in
Figure 4(b) is for a student learning the French
word étant (lexeme tag être.V.GER). Table 1 shows
what 〈p,∆,x〉 would look like for each session
in the student’s history with that word. The inter-
action features increase monotonically5 over time,
and xêtre.V.GER is the only lexeme feature to “fire”
for these instances (it has value 1, all other lexeme
features have value 0). The model also includes a
bias weight (intercept) not shown here.

4 Experiments

In this section, we compare variants of HLR with
other spaced repetition algorithms in the context of
Duolingo. First, we evaluate methods against his-
torical log data, and analyze trained model weights
for insight. We then describe two controlled user
experiments where we deployed HLR as part of
the student model in the production system.

5Note that in practice, we found that using the square root
of interaction feature counts (e.g.,

√
x⊕) yielded better re-

sults than the raw counts shown here.
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Model MAE↓ AUC↑ CORh↑
HLR 0.128* 0.538* 0.201*
HLR -lex 0.128* 0.537* 0.160*
HLR -h 0.350 0.528* -0.143*
HLR -lex-h 0.350 0.528* -0.142*

Leitner 0.235 0.542* -0.098*
Pimsleur 0.445 0.510* -0.132*

LR 0.211 0.513* n/a
LR -lex 0.212 0.514* n/a

Constant p̄ = 0.859 0.175 n/a n/a

Table 2: Evaluation results using historical log
data (see text). Arrows indicate whether lower (↓)
or higher (↑) scores are better. The best method
for each metric is shown in bold, and statistically
significant effects (p < 0.001) are marked with *.

4.1 Historical Log Data Evaluation

We collected two weeks of Duolingo log data,
containing 12.9 million student-word lesson and
practice session traces similar to Table 1 (for all
students in all courses). We then compared three
categories of spaced repetition algorithms:

• Half-life regression (HLR), our model from
§3.3. For ablation purposes, we consider four
variants: with and without lexeme features
(-lex), as well as with and without the half-
life term in the loss function (-h).

• Leitner and Pimsleur, two established base-
lines that are special cases of HLR, using
fixed weights. See the Appendix for a deriva-
tion of the model weights we used.

• Logistic regression (LR), a standard machine
learning6 baseline. We evaluate two variants:
with and without lexeme features (-lex).

We used the first 1 million instances of the data
to tune the parameters for our training algorithm.
After trying a handful of values, we settled on
λ = 0.1, α = 0.01, and learning rate η = 0.001.
We used these same training parameters for HLR
and LR experiments (the Leitner and Pimsleur
models are fixed and do not require training).

6For LR models, we include the lag time x∆ as an addi-
tional feature, since — unlike HLR — it isn’t explicitly ac-
counted for in the model. We experimented with polynomial
and exponential transformations of this feature, as well, but
found the raw lag time to work best.

Table 2 shows the evaluation results on the full
data set of 12.9 million instances, using the first
90% for training and remaining 10% for testing.
We consider several different evaluation measures
for a comprehensive comparison:

• Mean absolute error (MAE) measures how
closely predictions resemble their observed
outcomes: 1

D

∑D
i=1 |p− p̂Θ|i. Since the

strength meters in Duolingo’s interface are
based on model predictions, we use MAE as
a measure of prediction quality.

• Area under the ROC curve (AUC) — or the
Wilcoxon rank-sum test — is a measure of
ranking quality. Here, it represents the proba-
bility that a model ranks a random correctly-
recalled word as more likely than a random
incorrectly-recalled word. Since our model is
used to prioritize words for practice, we use
AUC to help evaluate these rankings.

• Half-life correlation (CORh) is the Spearman
rank correlation between ĥΘ and the alge-
braic estimate h described in §3.3. We use
this as another measure of ranking quality.

For all three metrics, HLR with lexeme tag fea-
tures is the best (or second best) approach, fol-
lowed closely by HLR -lex (no lexeme tags). In
fact, these are the only two approaches with MAE
lower than a baseline constant prediction of the av-
erage recall rate in the training data (Table 2, bot-
tom row). These HLR variants are also the only
methods with positive CORh, although this seems
reasonable since they are the only two to directly
optimize for it. While lexeme tag features made
limited impact, the h term in the HLR loss func-
tion is clearly important: MAE more than doubles
without it, and the -h variants are generally worse
than the other baselines on at least one metric.

As stated in §3.2, Leitner was the spaced repeti-
tion algorithm used in Duolingo’s production stu-
dent model at the time of this study. The Leitner
method did yield the highest AUC7 values among
the algorithms we tried. However, the top two
HLR variants are not far behind, and they also re-
duce MAE compared to Leitner by least 45%.

7AUC of 0.5 implies random guessing (Fawcett, 2006),
so the AUC values here may seem low. This is due in part
to an inherently noisy prediction task, but also to a range re-
striction: p̄ = 0.859, so most words are recalled correctly
and predictions tend to be high. Note that all reported AUC
values are statistically significantly better than chance using
a Wilcoxon rank sum test with continuity correction.
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Lg. Word Lexeme Tag θk

EN camera camera.N.SG 0.77
EN ends end.V.PRES.P3.SG 0.38
EN circle circle.N.SG 0.08
EN rose rise.V.PST -0.09
EN performed perform.V.PP -0.48
EN writing write.V.PRESP -0.81

ES liberal liberal.ADJ.SG 0.83
ES como comer.V.PRES.P1.SG 0.40
ES encuentra encontrar.V.PRES.P3.SG 0.10
ES está estar.V.PRES.P3.SG -0.05
ES pensando pensar.V.GER -0.33
ES quedado quedar.V.PP.M.SG -0.73

FR visite visiter.V.PRES.P3.SG 0.94
FR suis être.V.PRES.P1.SG 0.47
FR trou trou.N.M.SG 0.05
FR dessous dessous.ADV -0.06
FR ceci ceci.PN.NT -0.45
FR fallait falloir.V.IMPERF.P3.SG -0.91

DE Baby Baby.N.NT.SG.ACC 0.87
DE sprechen sprechen.V.INF 0.56
DE sehr sehr.ADV 0.13
DE den der.DET.DEF.M.SG.ACC -0.07
DE Ihnen Sie.PN.P3.PL.DAT.FORM -0.55
DE war sein.V.IMPERF.P1.SG -1.10

Table 3: Lexeme tag weights for English (EN),
Spanish (ES), French (FR), and German (DE).

4.2 Model Weight Analysis

In addition to better predictions, HLR can cap-
ture the inherent difficulty of concepts that are en-
coded in the feature set. The “easier” concepts
take on positive weights (less frequent practice re-
sulting from longer half-lifes), while the “harder”
concepts take on negative weights (more frequent
practice resulting from shorter half-lifes).

Table 3 shows HLR model weights for sev-
eral English, Spanish, French, and German lexeme
tags. Positive weights are associated with cog-
nates and words that are common, short, or mor-
phologically simple to inflect; it is reasonable that
these would be easier to recall correctly. Negative
weights are associated with irregular forms, rare
words, and grammatical constructs like past or
present participles and imperfective aspect. These
model weights can provide insight into the aspects
of language that are more or less challenging for
students of a second language.

Daily Retention Activity

Experiment Any Lesson Practice

I. HLR (v. Leitner) +0.3 +0.3 -7.3*
II. HLR -lex (v. HLR) +12.0* +1.7* +9.5*

Table 4: Change (%) in daily student retention for
controlled user experiments. Statistically signifi-
cant effects (p < 0.001) are marked with *.

4.3 User Experiment I

The evaluation in §4.1 suggests that HLR is a bet-
ter approach than the Leitner algorithm originally
used by Duolingo (cutting MAE nearly in half).
To see what effect, if any, these gains have on ac-
tual student behavior, we ran controlled user ex-
periments in the Duolingo production system.

We randomly assigned all students to one of
two groups: HLR (experiment) or Leitner (con-
trol). The underlying spaced repetition algorithm
determined strength meter values in the skill tree
(e.g., Figure 1(a)) as well as the ranking of target
words for practice sessions (e.g., Figure 1(b)), but
otherwise the two conditions were identical. The
experiment lasted six weeks and involved just un-
der 1 million students.

For evaluation, we examined changes in daily
retention: what percentage of students who en-
gage in an activity return to do it again the fol-
lowing day? We used three retention metrics: any
activity (including contributions to crowdsourced
translations, online forum discussions, etc.), new
lessons, and practice sessions.

Results are shown in the first row of Table 4.
The HLR group showed a slight increase in overall
activity and new lessons, but a significant decrease
in practice. Prior to the experiment, many stu-
dents claimed that they would practice instead of
learning new material “just to keep the tree gold,”
but that practice sessions did not review what they
thought they needed most. This drop in practice
— plus positive anecdotal feedback about stength
meter quality from the HLR group — led us to
believe that HLR was actually better for student
engagement, so we deployed it for all students.

4.4 User Experiment II

Several months later, active students pointed out
that particular words or skills would decay rapidly,
regardless of how often they practiced. Upon
closer investigation, these complaints could be
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traced to lexeme tag features with highly negative
weights in the HLR model (e.g., Table 3). This im-
plied that some feature-based overfitting had oc-
curred, despite the L2 regularization term in the
training procedure. Duolingo was also preparing
to launch several new language courses at the time,
and no training data yet existed to fit lexeme tag
feature weights for these new languages.

Since the top two HLR variants were virtually
tied in our §4.1 experiments, we hypothesized that
using interaction features alone might alleviate
both student frustration and the “cold-start” prob-
lem of training a model for new languages. In a
follow-up experiment, we randomly assigned all
students to one of two groups: HLR -lex (experi-
ment) and HLR (control). The experiment lasted
two weeks and involved 3.3 million students.

Results are shown in the second row of Ta-
ble 4. All three retention metrics were signifi-
cantly higher for the HLR -lex group. The most
substantial increase was for any activity, although
recurring lessons and practice sessions also im-
proved (possibly as a byproduct of the overall ac-
tivity increase). Anecdotally, vocal students from
the HLR -lex group who previously complained
about rapid decay under the HLR model were also
positive about the change.

We deployed HLR -lex for all students, and be-
lieve that its improvements are at least partially re-
sponsible for the consistent 5% month-on-month
growth in active Duolingo users since the model
was launched.

5 Other Related Work

Just as we drew upon the theories of Ebbinghaus
to derive HLR as an empirical spaced repetition
model, there has been other recent work drawing
on other (but related) theories of memory.

ACT-R (Anderson et al., 2004) is a cognitive
architecture whose declarative memory module8

takes the form of a power function, in contrast to
the exponential form of the Ebbinghaus model and
HLR. Pavlik and Anderson (2008) used ACT-R
predictions to optimize a practice schedule for
second-language vocabulary, although their set-
ting was quite different from ours. They assumed
fixed intervals between practice exercises within
the same laboratory session, and found that they
could improve short-term learning within a ses-

8Declarative (specifically semantic) memory is widely re-
garded to govern language vocabulary (Ullman, 2005).

sion. In contrast, we were concerned with mak-
ing accurate recall predictions between multiple
sessions “in the wild” on longer time scales. Ev-
idence also suggests that manipulation between
sessions can have greater impact on long-term
learning (Cepeda et al., 2006).

Motivated by long-term learning goals, the mul-
tiscale context model (MCM) has also been pro-
posed (Mozer et al., 2009). MCM combines two
modern theories of the spacing effect (Staddon et
al., 2002; Raaijmakers, 2003), assuming that each
time an item is practiced it creates an additional
item-specific forgetting curve that decays at a dif-
ferent rate. Each of these forgetting curves is ex-
ponential in form (similar to HLR), but are com-
bined via weighted average, which approximates
a power law (similar to ACT-R). The authors
were able to fit models to controlled laboratory
data for second-language vocabulary and a few
other memory tasks, on times scales up to several
months. We were unaware of MCM at the time of
our work, and it is unclear if the additional compu-
tational overhead would scale to Duolingo’s pro-
duction system. Nevertheless, comparing to and
integrating with these ideas is a promising direc-
tion for future work.

There has also been work on more heuris-
tic spaced repetition models, such as Super-
Memo (Woźniak, 1990). Variants of this algo-
rithm are popular alternatives to Leitner in some
flashcard software, leveraging additional parame-
ters with complex interactions to determine spac-
ing intervals for practice. To our knowledge, these
additional parameters are hand-picked as well, but
one can easily imagine fitting them empirically to
real student log data, as we do with HLR.

6 Conclusion

We have introduced half-life regression (HLR), a
novel spaced repetition algorithm with applica-
tions to second language acquisition. HLR com-
bines a psycholinguistic model of human mem-
ory with modern machine learning techniques, and
generalizes two popular algorithms used in lan-
guage learning technology: Leitner and Pimsleur.
We can do this by incorporating arbitrarily rich
features and fitting their weights to data. This ap-
proach is significantly more accurate at predict-
ing student recall rates than either of the previous
methods, and is also better than a conventional ma-
chine learning approach like logistic regression.
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One result we found surprising was that lexeme
tag features failed to improve predictions much,
and in fact seemed to frustrate the student learn-
ing experience due to over-fitting. Instead of the
sparse indicator variables used here, it may be bet-
ter to decompose lexeme tags into denser and more
generic features of tag components9 (e.g., part of
speech, tense, gender, case), and also use corpus
frequency, word length, etc. This representation
might be able to capture useful and interesting reg-
ularities without negative side-effects.

Finally, while we conducted a cursory analy-
sis of model weights in §4.2, an interesting next
step would be to study such weights for even
deeper insight. (Note that using lexeme tag com-
ponent features, as suggested above, should make
this anaysis more robust since features would be
less sparse.) For example, one could see whether
the ranking of vocabulary and/or grammar compo-
nents by feature weight is correlated with external
standards such as the CEFR (Council of Europe,
2001). This and other uses of HLR hold the poten-
tial to transform data-driven curriculum design.

Data and Code

To faciliatate research in this area, we have pub-
licly released our data set and code from §4.1:
https://github.com/duolingo/halflife-regression.
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help gathering data from various parts of the sys-
tem. We also thank the anonymous reviewers for
suggestions that improved the final manuscript.

References
J.R. Anderson, D. Bothell, M.D. Byrne, S. Douglass,

C. Libiere, and Y. Qin. 2004. An intergrated theory
of mind. Psychological Review, 111:1036–1060.

R.C. Atkinson. 1972. Optimizing the learning of a
second-language vocabulary. Journal of Experimen-
tal Psychology, 96(1):124–129.

J.H. Block, P.W. Airasian, B.S. Bloom, and J.B. Car-
roll. 1971. Mastery Learning: Theory and Practice.
Holt, Rinehart, and Winston, New York.
9Engineering-wise, each lexeme tag (e.g., être.V.GER) is

represented by an ID in the system. We used indicator vari-
ables in this work since the IDs are readily available; the over-
head of retreiving all lexeme components would be inefficient
in the production system. Of course, we could optimize for
this if there were evidence of a significant improvement.

K.C. Bloom and T.J. Shuell. 1981. Effects of massed
and distributed practice on the learning and retention
of second language vocabulary. Journal of Educa-
tional Psychology, 74:245–248.

N.J. Cepeda, H. Pashler, E. Vul, J.T. Wixted, and
D. Rohrer. 2006. Distributed practice in verbal re-
call tasks: A review and quantitative synthesis. Psy-
chological Bulletin, 132(3):354.

Council of Europe. 2001. Common European Frame-
work of Reference for Languages: Learning, Teach-
ing, Assessment. Cambridge University Press.

R. DeKeyser. 2008. Implicit and explicit learning.
In The Handbook of Second Language Acquisition,
chapter 11, pages 313–348. John Wiley & Sons.

F.N. Dempster. 1989. Spacing effects and their im-
plications for theory and practice. Educational Psy-
chology Review, 1(4):309–330.

J.J. Donovan and D.J. Radosevich. 1999. A meta-
analytic review of the distribution of practice effect:
Now you see it, now you don’t. Journal of Applied
Psychology, 84(5):795–805.

J. Duchi, E. Hazan, and Y. Singer. 2011. Adaptive sub-
gradient methods for online learning and stochas-
tic optimization. Journal of Machine Learning Re-
search, 12(Jul):2121–2159.

H. Ebbinghaus. 1885. Memory: A Contribution
to Experimental Psychology. Teachers College,
Columbia University, New York, NY, USA.

P.J. Fahy. 2004. Media characteristics and online
learning technology. In T. Anderson and F. Elloumi,
editors, Theory and Practice of Online Learning,
pages 137–171. Athabasca University.

T. Fawcett. 2006. An introduction to ROC analysis.
Pattern Recognition Letters, 27:861–874.

M.L. Forcada, M. Ginestı́-Rosell, J. Nordfalk,
J. O’Regan, S. Ortiz-Rojas, J.A. Pérez-Ortiz,
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A Appendix

A.1 Lexeme Tagger Details
We use a lexeme tagger, introduced in §2, to ana-
lyze and index the learning corpus and student re-
sponses. Since Duolingo courses teach a moderate
set of words and concepts, we do not necessarily
need a complete, general-purpose, multi-lingual
NLP stack. Instead, for each language we use a fi-
nite state transducer (FST) to efficiently parse can-
didate lexeme tags10 for each word. We then use a

10The lexeme tag set is based on a large morphology dictio-
nary created by the Apertium project (Forcada et al., 2011),
which we supplemented with entries from Wiktionary (Wiki-
media Foundation, 2002) and other sources. Each Duolingo
course teaches about 3,000–5,000 lexeme tags.

Abbreviation Meaning

ACC accusative case
ADJ adjective
ADV adverb
DAT dative case
DEF definite
DET determiner
FORM formal register
F feminine
GEN genitive case
GER gerund
IMPERF imperfective aspect
INDF indefinite
INF infinitive
M masculine
N noun
NT neuter
P1/P2/P3 1st/2nd/3rd person
PL plural
PN pronoun
PP past participle
PRESP present participle
PRES present tense
PST past tense
SG singular
V verb

Table 5: Lexeme tag component abbreviations.

hidden Markov model (HMM) to determine which
tag is correct in a given context.

Consider the following two Spanish sentences:
‘Yo como manzanas’ (‘I eat apples’) and ‘Corro
como el viento’ (‘I run like the wind’). For both
sentences, the FST parses the word como into
the lexeme tag candidates comer.V.PRES.P1.SG

([I] eat) and como.ADV.CNJ (like/as). The HMM
then disambiguates between the respective tags for
each sentence. Table 5 contains a reference of the
abbreviations used in this paper for lexeme tags.

A.2 Pimsleur and Leitner Models
As mentioned in §3.3, the Pimsleur and Leitner
algorithms are special cases of HLR using fixed,
hand-picked weights. To see this, consider the
original practice interval schedule used by Pim-
sleur (1967): 5 sec, 25 sec, 2 min, 10 min, 1 hr,
5 hr, 1 day, 5 days, 25 days, 4 months, and 2 years.
If we interpret this as a sequence of ĥΘ half-lifes
(i.e., students should practice when p̂Θ = 0.5), we
can rewrite (2) and solve for log2(ĥΘ) as a linear
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equation. This yields Θ = {xn : 2.4, xb : -16.5},
where xn and xb are the number of practices and
a bias weight (intercept), respectively. This model
perfectly reconstructs Pimsleur’s original schedule
in days (r2 = 0.999, p � 0.001). Analyzing the
Leitner variant from Figure 3 is even simpler: this
corresponds to Θ = {x⊕ : 1, x	 : -1}, where x⊕
is the number of past correct responses (i.e., dou-
bling the interval), and x	 is the number of incor-
rect responses (i.e., halving the interval).

A.3 Training and Optimization Details
The complete objective function given in §3.3 for
half-life regression is:

`(〈p,∆,x〉; Θ) = (p− p̂Θ)2

+ α(h− ĥΘ)2 + λ‖Θ‖22 .

Substituting (1) and (2) into this equation produces
the following more explicit formulation:

`(〈p,∆,x〉; Θ) =
(
p− 2−

∆

2Θ·x
)2

+ α

( −∆
log2(p)

− 2Θ·x
)2

+ λ‖Θ‖22 .

In general, the search for Θ∗ weights to minimize
` cannot be solved in closed form, but since it is a
smooth function, it can be optimized using gradi-
ent methods. The partial gradient of ` with respect
to each θk weight is given by:

∂`

∂θk
= 2(p̂Θ − p) ln2(2)p̂Θ

(
∆

ĥΘ

)
xk

+ 2α
(
ĥΘ +

∆
log2(p)

)
ln(2)ĥΘxk

+ 2λθk .

In order to fit Θ to a large amount of student
log data, we use AdaGrad (Duchi et al., 2011),
an online algorithm for stochastic gradient descent
(SGD). AdaGrad is typically less sensitive to the
learning rate parameter η than standard SGD, by
dynamically scaling each weight update as a func-
tion of how often the corresponding feature ap-
pears in the training data:

θ
(+1)
k := θk − η

[
c(xk)−

1
2

] ∂`
∂θk

.

Here c(xk) denotes the number of times feature
xk has had a nonzero value so far in the SGD pass

through the training data. This is useful for train-
ing stability when using large, sparse feature sets
(e.g., the lexeme tag features in this study). Note
that to prevent computational overflow and under-
flow errors, we bound p̂Θ ∈ [0.0001, 0.9999] and
ĥΘ ∈ [15 min, 9 months] in practice.
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