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ABSTRACT
Item harvesters who memorize, record and share test items can jeopardize the 
validity and fairness of credentialing tests. Item harvesting behaviors are 
di"cult to detect by the existing statistical modeling approaches due to the 
absence of operational de#nitions and the idiosyncratic nature of human 
behaviors. Motivated to detect the hard-to-de#ne aberrant test-taking beha-
viors like item harvesting, we proposed a data-mining approach that utilized 
the process data and identi#ed the examinees whose test-taking processes 
deviate from the majority of examinees. Speci#cally, two steps were imple-
mented in the proposed approach: First, archetypes of test-taking processes 
are learned with the k-means clustering algorithm; second, examinees whose 
behavioral patterns deviate from the archetypes are $agged for further inves-
tigation. Given that the process data makes it possible to capture more subtle 
di!erences between the aberrant test-takers and normal examinees, the pro-
posed approach is expected to be complementary of the statistical modeling 
methods, capture additional types of aberrant test-takers and increase the 
probability of discovering the elusive item harvesters.
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Introduction

Item harvesters who memorize, record and share test items can jeopardize the validity and fairness of 
credentialing tests and cause financial and reputational losses to testing companies. Unlike some other 
abnormal testing behaviors such as copying and cheating, it is hard to delineate a behavioral pattern of 
item harvesting. Although item harvesters may be characterized by intentionally failing or long 
sequences of incorrect responses (Thissen-Roe, 2016), these characteristics alone cannot distinguish 
item harvesters from normal low-ability examinees due to the idiosyncratic nature of human beha-
viors. Fortunately, the availability of process data makes it possible to capture more subtle differences 
between the aberrant test-takers and normal examinees. Motivated to detect the hard-to-define 
aberrant test-taking behaviors like item harvesting, this study intends to develop a data-mining 
approach that utilizes process data to discover what the test-taking behavioral patterns are like for 
the majority of examinees (i.e., behavioral archetypes) and detect examinees whose behaviors deviate 
from the majority.

Process data, especially response times and erasure, have been used to detect abnormal testing 
behaviors (e.g., Marianti et al., 2014; Qualls, 2001; Van der Linden & Guo, 2008). Most of the previous 
studies on cheating detection used parametric methods based on strict assumptions and only limited 
types of process data. However, behaviors like item harvesting do not manifest themselves through 
a single variable and thus may require a more data-driven approach in order to be detected. To this 
end, we propose a two-step exploratory approach based on an unsupervised learning algorithm, 
k-means clustering (MacQueen, 1967). Specifically, we 1) use a clustering method to learn archetypes 
of the test-taking process and 2) identify examinees whose behavioral patterns deviate from the 
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archetypes. Table 1 shows the major types of process data analyzed in this study. A wider range of 
process data, if available, could be incorporated into the proposed approach. We expect the proposed 
approach to be complementary of the statistical modeling methods for detecting abnormal test-taking 
processes (e.g., Van der Linden & Guo, 2008; Van der Linden & Jeon, 2012), due to the following 
major differences between the existing statistical modeling methods and the proposed approach. On 
one hand, the nature of the abnormal test-taking processes discovered by these methods are different. 
The statistical modeling methods are designed to discover abnormal response processes with clear 
operational definition (e.g., response processes with lots of right-to-wrong answer changes) while the 
proposed method is intended to discover the abnormal response processes that are hard to oper-
ationally define. On the other hand, the types of data utilized by these methods are different. The 
statistical modeling methods only utilized a limited variety of process data, if any, while the proposed 
method utilized a wide variety of process data. For example, the modeling method by Van der Linden 
and Guo (2008) is designed for being applied exclusively to response times, while the proposed 
method in this study utilizes the answer change and item revisit information in addition to response 
times. If additional types of process data were to be found useful, they could be easily incorporated as 
features in the proposed method as well. Given the differences between the statistical modeling 
methods and the proposed method, we expect the results obtained from these methods to be different.

The remainder of the paper starts with introducing the k-means clustering algorithm as the 
theoretical background. The proposed two-step approach is then elaborated along with an innovative 
way to represent the test-taking process. The proposed procedure was applied to a high-stakes and 
high-volume licensure exam data set. The configurations and results of the archetype learning and 
outlier detection procedures are presented. Finally, implications, limitations and future directions of 
this study are discussed.

Theoretical framework

The k-means clustering (MacQueen, 1967) is an unsupervised learning algorithm that divides data 
points into a number of non-overlapping clusters. While the k-means clustering is a popular 
technique, it has not been applied to detecting abnormal test-taking behaviors. Thus, the proposed 
approach is a novel application of the k-means clustering technique to address such educational 
measurement issues. Compared to the existing approaches on abnormal test-taking behavior detec-
tion (e.g., Van der Linden & Guo, 2008; Van der Linden & Jeon, 2012), the proposed k-means-based 
method incorporates a wider variety of process data to detect the abnormal test-taking behaviors. 
Tang et al. (2020) have empirically proved that response processes contain much richer information 
than the binary item responses, advocating for leveraging the information from the process data. 
The proposed method is an original effort to leverage the information from the response processes 

Table 1. Major types of process data analyzed in this study.

Process data type Description Example values

Response time Time (in seconds) elapsed between an examinee 
starting to view an item and leaving for 
another item

69.5, 125.4

Action type The category of response, such as an initial 
response or an answer change

BTR – changing answer from blank to right 
(i.e., answering an item correctly at the 
initial visit)  

WTR – changing answer from wrong to right  

NC – reviewing answer with no change
Item presentation order The presentation order of the item that an 

examinee is viewing
1, 2, 3

Number of item visits (NVISIT) The number of times an item is visited by an 
examinee

1, 2, 3
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to detect abnormal test-taking behaviors. Many existing approaches for abnormal test-taking 
behavior detection (e.g., Van der Linden & Guo, 2008; Van der Linden & Jeon, 2012) are based 
on statistical modeling. One limitation of these existing methods is that they only utilized a limited 
variety of process data, if any, and could hardly incorporate additional types of process data. For 
instance, the modeling method proposed by Van der Linden and Guo (2008) is designed for being 
applied to response times, but it is challenging to generalize this method to incorporate additional 
useful information in the process data, such as item revisit. In contrast, the proposed k-means-based 
method utilizes the answer change and item revisit information in addition to the response times. 
Further, if additional types of process data were to be found useful, they could be easily incorporated 
as features in the proposed method.

Basics of k-means clustering

In the k-means clustering, data points belonging to the same cluster are deemed to share more 
similarity than other points in other clusters. The center of each cluster is referred to as centroid. 
The goal of the k-means clustering algorithm is to minimize the objective function, given by: 
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where xÖkÜn is a data point that has been assigned to the kth cluster; ck is the centroid of the cluster; and 
xÖkÜn � ck

���
��� represents the distance between the data point and the centroid. This study chose to use 

one of the most common types of distance, the Euclidean distance, as the distance measure. The 
Euclidean distance is calculated as the sum of the squared error between the two points in terms of 
various features. Assuming that the data are described by M features, the Euclidean distance is 
written as: 
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In general, the k-means algorithm works as follows:

(1) Set the number of clusters, K;
(2) Select K points in the M-dimensional vector space as the initial centroids;
(3) Assign each data point, xn, to the cluster whose centroid is the closest to the data point;
(4) Recalculate the centroids of the clusters; and
(5) Repeat Steps 3) and 4) until the positions of the centroids do not change any more.

Choice of the number of clusters

Since the number of clusters, K, needs to be pre-specified in the k-means clustering algorithm and 
could influence the clustering results, it is crucial to choose a reasonable number of clusters. 
A number of statistical methods have been proposed to determine the number of clusters. For 
example, in the “elbow method,” multiple rounds of k-means clustering with different numbers of 
K are run, and the percentage of variance explained is plotted against the number of clusters. One 
should choose a number of clusters at the “elbow point” of the plot where the increase in the 
number of clusters no longer leads to increase in the variance explained (Thorndike, 1953). In 
addition to the percentage of variance, other indices, such as the silhouette width (Rousseeuw, 
1987) and Dunn index (Dunn, 1974), have also been used to assess the number of clusters. The 
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R package NbClust (Charrad et al., 2014) have used thirty indices for determining the number of 
clusters.

Stability of the clustering results

Since the clustering results can be dependent on the sample and be sensitive to the initial values (Pena 
et al., 1999), a number of methods have been used to ensure the stability of the clustering results. For 
instance, Ben-Hur et al. (2001) have defined stability as the pairwise similarity between clustering 
results based on different subsamples of the data, and they used the stability-based method to help 
choose an optimal number of clusters. Running k-means clustering with multiple initial values is also 
a common method to improve the stability of the clustering results (e.g., “K-means Cluster Analysis 
UC Business Analytics R Programming Guide,” n.d.).

The proposed approach

The proposed two-step approach utilizes k-means clustering to learn archetypes of the test-taking 
process and identify examinees with behavioral patterns that deviate from the archetypes. In general, 
three research questions can be answered by the proposed procedure: 1) How many test-taking 
process archetypes are there? 2) What are the characteristics of each archetype? 3) Which examinees 
display test-taking processes deviating from the majority?

Before going into detail about the proposed procedures of archetype learning and outlier detection, 
we introduce a way of representing the test-taking process. In particular, the test-taking process is 
represented as an action sequence or a behavioral sequence.

Test-taking process representation

In this study, the test-taking process is represented by a sequence of actions or behaviors. To 
distinguish between an action and a behavior, we define an action as an examinee’s interaction with 
an item, and the process data contain the information (e.g., response time, action flag) about each 
action; in contrast, we refer to a behavior as a conscious activity with subjective meaning that cannot 
be directly observed in the process data. Figure 1 visualizes the action sequence of a hypothetical 
examinee where each action is described in terms of the item presentation order and action type. The 
item presentation order and action type are defined in Table 1. In particular, the action types 

Figure 1. Visualization of the action sequence of a hypothetical examinee.  
Note: The vertical red line separates the “initial item response” stage and the “item revisit” stages. The action types represented by 
different colors of dots indicate the category of initial response or answer change (BTR=Blank to Right; BTW=Blank to Wrong; NC=No 
Change; RTW=Right to Wrong; WTR=Wrong to Right; WTW=Wrong to Wrong). In general, the examinee responds to the items 
sequentially during the “initial item response” stage except that he or she goes back to change the answer of the 1st item from 
wrong to right after answering the eighth item. In the “item revisit” stage, the examinee revisits the first 50 items sequentially and 
makes a few answer changes.
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represented by different colors of dots in Figure 1 indicate the category of initial response or answer 
change. In this study, the action type variable has six possible values, including Blank to Right (BTR), 
Blank to Wrong (BTW), No Change (NC), Right to Wrong (RTW), Wrong to Right (WTR) and 
Wrong to Wrong (WTW). It can be seen that this examinee responds to most of the items sequentially. 
After seeing all the items at least once (indicated by the vertical red line), the examinee revisits the first 
50 items sequentially and makes a few answer changes.

An alternative way of visualizing the action sequence is presented at the top of Figure 2 where each 
action is represented by an ellipse containing feature (e.g., action flag, item presentation order, response 
time) that describe the action. When multiple features are used to describe the action, information from 
different sources can be incorporated in the analyses. Representing the test-taking process as an action 
sequence minimizes the loss of information given that the feature values of each action are directly from 
the raw process data. However, it is hard to understand or interpret examinees’ intentions or cognitive 
states based on these raw action sequences without extracting more abstract information.

Inspired by the studies in the field of video action recognition (e.g., Ke et al., 2007; Van der Linden & 
Guo, 2008) where the raw video clips consisting of consecutive frames have been represented as a sequence 
of meaningful behaviors, we propose to represent the test-taking process as a behavioral sequence which is 
constructed by extracting the abstract information from the raw action sequence. Specifically, an analogy 
has been drawn between a video as a sequence of frames and a test-taking process as a sequence of actions. 
In a video, a behavior (e.g., running, walking) can be learned from several consecutive frames; in the test- 
taking process, a behavior is to be learned from several consecutive actions (i.e., action segments). An 
intuitive example of learning behaviors from consecutive actions is that when an examinee demonstrates 
several consecutive actions without answer changes and with very short response times, it may be inferred 
that this examinee is conducting a “clicking through without paying attention” behavior. The process of 
learning behaviors from raw action sequences is demonstrated in Figure 2 where the behaviors are referred 
to as “codewords” so that they can be further used in conjunction with text-mining techniques for learning 
examinee archetypes (e.g., Niebles et al., 2008). The process of learning behavioral archetypes and examinee 
archetypes is elaborated in the following section.

Learning test-taking process archetypes

Two rounds of k-means clustering are conducted: the first round is implemented at action-segment 
level, so the behavioral archetypes can be learned; and the second round is implemented at the person 
level, which learns the archetypes of examinees.

Segment 1 

Action flow  
1 
8 

BTW 

1 
1 

WTR 

1 
13 

BTR 
… … 1 

94 
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1 
95 
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1 
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… … 1 
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1 
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1 
7 

BTW 
… … … … 

Segment 2 Segment 20 Segmenting 

Labeling 
Codeword A1 Codeword A1 Codeword A3 

(7 actions) )snoitca7()snoitca7(

Figure 2. Procedure of behavioral archetype learning.  
Note: Each ellipse represents an action and contains the features used to describe the action (the response time is omitted in this 
figure). The acronym and number in an ellipse denote the action type and the corresponding item’s presentation order, respectively. 
Note that since item review is allowed, it is possible that an action flow contains several actions that are associated with one item. For 
example, there are two actions associated with Item 1 in this figure. The action flow is segmented every seven actions. Every action 
segment is assigned a codeword after behavioral archetypes are learned using k-means clustering.

MEASUREMENT: INTERDISCIPLINARY RESEARCH & PERSPECTIVES 97



Learning behavioral archetypes
To learn behaviors from raw action sequences, a raw action sequence is divided into action segments, each 
containing a number of consecutive actions (See Figure 2). Each action segment is described by a number 
of features such as the mean and standard deviation of the response times, the number of answer changes 
and so on. The action segments of all the examinees are analyzed altogether using k-means clustering. The 
resulting number of clusters indicates the number of behavioral archetypes while the characteristics of 
each archetype are described by the characteristics of the corresponding cluster centroid.

Learning examinee archetypes
Once the behavioral archetypes are learned, the test-taking process can be represented as a sequence of 
behaviors or “codewords” as shown at the bottom of Figure 2. Following the bag-of-words representa-
tion that has been widely used in the fields of natural language processing (e.g., Kao & Poteet, 2007) 
and video action recognition (e.g., Niebles et al., 2008), examinees’ codeword frequencies are used as 
features to learn archetypes and detect outliers at the person level.

Detecting outlying test-taking behaviors and examinees

Some outlier detection methods based on k-means clustering have been proposed (e.g., Chawla & 
Gionis, 2013). Such methods can be a natural next step of the k-means-based archetypes learning 
processes. Furthermore, the outlier removal and k-means clustering can be implemented iteratively to 
improve the clustering results when the clusters are highly overlapped (Hautamäki et al., 2005). In this 
study, a simple version of k-means-based outlier detection algorithm is implemented:

(1) Calculate the Euclidean distance, Dn, between each data point xÖkÜn and its corresponding 
centroid ck, and label the maximum Dn value among all the data points as Dmax;

(2) Convert Dn to a 0–1 scale, i.e., D0n à Dn=Dmax;
(3) Flag individuals with D0n larger than a pre-specified threshold, ϕ, as outlier.

This algorithm identifies data points that lie far away from the clusters. The outliers are flagged at 
both action-segment and person levels, thus both the outlying test-taking behaviors and examinees are 
detected.

Empirical data analysis

Data and test-taking process representation

The proposed procedure was applied to a high-stakes and high-volume licensure exam dataset from 
a three-month period. Item review and answer changes are allowed throughout the exam. The 
dataset contains 451,125 actions of 2,919 examinees. The response process of each examinee was 
divided into “initial item response” and “item revisit” stages. The “initial item response” stage refers 
to the response process before the point where an examinee has seen every test item at least once; 
examinees’ initial responses to all the items occur in this stage. The “item revisit” stage refers to the 
process where examinees review their item responses after they have seen every test item at least 
once; changes or confirmations of the initial responses could occur in this stage. Van der Linden and 
Jeon (2012) used different statistical models to model the response probabilities in these two stages. 
Thus, in this study, the response processes were assumed to be different and were analyzed 
separately for these two stages.

Within each stage, the response process manifested as action sequence was divided into action 
segments containing seven actions each (See Figure 2). Seven was chosen as it is the median number of 
actions within a 10-min time window and this study assumes that a 10-min time window is sufficiently 
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long to provide meaningful behavioral information. As a result, the numbers of action segments are 
49,169 and 13,065 in the “initial item response” and “item revisit” stages, respectively.

Behavioral archetypes

To learn behavioral archetypes, the k-means clustering was performed on the action-segment-level 
datasets, separately, from the “initial item response” and “item revisit” stages. The sets of features used 
to describe the action segments were slightly different between the “initial item response” and “item 
revisit” stages. In “initial item response” stage, the features include the mean and standard deviation of 
response times,1 the proportion of actions that involve initial item visit (i.e., NVISIT = 1) and the 
number of answer changes. In “item revisit” stage, the proportion of actions that involve initial item 
visit was excluded from the feature list as its value would be zero for all the action segments in this 
stage.

As the numbers of action segments are enormous in both response stages and it is intractable to run 
k-means clustering using all the action segments simultaneously, the k-means clustering was per-
formed on subsamples of the action segments. To ensure the stability and representativeness of the 
results, five subsamples of action segments belonging to 100 randomly sampled examinees were 
created and k-means clustering was performed to each subsample; the final clustering results were 
obtained by pooling the results across the five subsamples.

To determine the number of behavioral archetypes (i.e., the optimal number of clusters for the 
whole action-segment sample), five replications of k-means clustering, each with a distinct set of initial 
values, were performed on each subsample; the mode of the optimal numbers of clusters (i.e., optimal 
k) suggested by the NbClust package (Charrad et al., 2014) was chosen as the optimal k for the 
subsample. Further, the mode of the optimal k across the subsamples was determined as the optimal 
number of clusters for the whole action-segment sample, indicating the number of behavioral 
archetypes. As a result, 3 and 4 behavioral archetypes were found in the “initial item response” and 
“item revisit” stages, respectively. The behavioral archetypes learned from the “initial item response” 
and “item revisit” stages were labeled as codewords A1-A3 and B1-B4, respectively. The stability of the 
clustering results was evaluated by the consistency of the optimal k’s across the five subsamples. The 
clustering results are more stable in the “item revisit” stage than those in the “initial item response” 
stage. Specifically, the optimal k values are consistently 4 for all the five subsamples in the “item revisit” 
stage; however, the optimal k values are 3 for three subsamples and 2 for two subsamples in the “initial 
item response” stage. Thus, we focus on interpreting the results from the “item revisit” stage.2

To learn the characteristics of the behavioral archetypes, the k-means clustering with k set at the 
number of behavioral archetypes (K’) was performed on each subsample, resulting in K’ centroids; 
each action segment in the whole action-segment dataset was then assigned to the cluster that has the 
closest centroid. The final cluster membership of an action segment is determined as the cluster to 
which this action segment is most frequently assigned, after resolving the label switching issue across 
subsamples.3 The final clustering centroid was defined as the “center” of all the action segments 
belonging to this cluster. The means of the feature values of all the action segments within a cluster 
were used to describe the quantitative characteristics of the cluster or the corresponding behavioral 
archetype; these mean values were further compared with some pre-specified cutoffs to describe the 
qualitative characteristics of the behavioral archetype.

Figure 3 displays the quantitative and qualitative characteristics of the four behavioral archetypes 
learned from the “item revisit” stage. The 30th and 70th percentiles of the feature values in the whole 
action-segment sample were used as cutoffs to distinguish low, moderate and high levels in terms of 
the feature. Each behavioral archetype is characterized by the levels of the features. For example, 
archetype B1 represents a type of behavior that, comparatively, has long mean response time, many 
answer changes, and moderate variation in response time. Among the action segments clustered into 
this archetype, the average number of answer changes is 3.55. The interpretation of other behavioral 
archetypes can be made in a similar manner.
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More meaningful interpretation about behaviors may be inferred from the characteristics of the 
archetypes. For instance, archetype B2 may be interpreted as a “click through without paying 
attention” behavior given that it contains consecutive actions with short response times and few 
answer changes. In contrast, archetype B1 may represent a behavior of “constantly careful change 
answers”. Nevertheless, more inspections are needed to understand and determine the meaning of all 
the behaviors.

Examinee archetypes

To learn the examinee archetypes, the frequencies of the codewords A1 – A3 and B1 – B4 are used as 
features for person-level k-means clustering. Three clusters were suggested by the NbClust package 
(Charrad et al., 2014), indicating that there are three examinee archetypes. The qualitative character-
istics of these archetypes are shown in Figure 4. For example, Examinee Archetype 1 demonstrates 
a large number of behaviors A1 and A2 but only have a few other behaviors including clicking through 
(B2) and constant answer change (B1). In contrast, Examinee Archetype 3 displays a large number of 
behaviors except A1 and A2. Future studies could include examinees’ background information and 
test results as features in the clustering algorithm to examine their relationships with the test-taking 
process.

Outliers

The k-means-based outlier detection method described in the “Detecting Outlying Test-Taking 
Behaviors and Examinees” section was implemented to detect both behavior and examinee outliers. 

Figure 4. Qualitative characteristics of the examinee archetypes.

Examinee archetype Frequency of codewords
A1 A2 A3 B1 B2 B3 B4

Archetype 1
Archetype 2
Archetype 3

Characteristics of 
centroid valuea High Low

aThe 50th percentiles of the feature values in the whole examinee sample were used as cutoffs to distinguish low and high levels of 
the features.

Figure 3. Quantitative and qualitative characteristics of the behavioral archetypes learned from the “item revisit” stage.

Features

Behavioral archetype Mean response timea Standard deviation of 
response timea

Number of answer 
changes

B1 3.39 0.70 3.55
B2 1.22 0.38 0.02
B3 2.37 1.04 0.62
B4 3.15 0.60 0.98

Characteristics of 
centroid valueb High Moderate Low

aThe means and standard deviations of response time are in terms of log-transformed seconds. A log transformation was employed 
to eliminate the strong positive skew of the raw RTs. 

bThe 30th and 70th percentiles of the feature values in the whole action sample were used as cutoffs to distinguish low, moderate 
and high levels of the features.
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The threshold ϕ was set at 0.7. The threshold ϕ was chosen such that the proposed method can 
demonstrate the power to flag outliers while the number of outliers is within a manageable range for 
further investigations, given that qualitative analyses (e.g., human judgment of whether an individual 
is a confirmed item harvester based on revisiting the response processes, video and other relevant 
evidence) are to be conducted to the flagged outliers on a case-by-case basis. Specifically, we have 
compared the number of flagged outliers using different threshold ϕ specifications (i.e., 0.6, 0.7, 0.8 
and 0.9) and determined that the number of flagged outliers using the threshold of 0.7 is optimal from 
the pragmatic perspective. In particular, using the threshold of 0.7, 15 examinees were found to display 
outlying test-taking behaviors based on the action-segment-level clustering while 19 were flagged as 
person outliers based on the person-level clustering. If a threshold of 0.8 or higher were used, fewer 
than 10 examinees would be flagged and the method may lack power; If a threshold of 0.6 or lower 
were used, more than 30 examinees would be flagged by each method and it would be costly to 
investigate all the outliers case by case. Note that the outliers identified by the person-level clustering 
do not necessarily contain the outlying behaviors detected by the action-segment-level clustering and 
vice versa, which implies that the two rounds of clustering may be complementary to each other.

Figure 5. Visualization of the action sequence of an example examinee who had 15 action segments identified as outliers.  
Note: The action types represented by different colors of dots indicate the category of initial response or answer change (BTR=Blank 
to Right; BTW=Blank to Wrong; NC=No Change; RTW=Right to Wrong; WTR=Wrong to Right; WTW=Wrong to Wrong). The outlying 
action segments are highlighted with rectangles. The vertical red line separates the “initial item response” stage and the “item 
revisit” stage.
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To validate that the outliers identified by the data mining procedure are meaningful, we investi-
gated the action sequences of each identified outlier (See Figures 3 and 4 for examples) and consulted 
the test security experts whether these action sequences are deemed unusual based on their profes-
sional judgment. The confirmation from the test security experts serves as evidence to support that the 
outliers identified from the data mining procedure are substantive.

Figure 5 visualizes the action sequence of an examinee who has 15 action segments identified as 
outliers in the action-segment-level clustering. It can be observed that, in the flagged action segments 
(highlighted by the rectangles), this examinee constantly made answer changes with short response 
times, which was deemed unusual in a test-taking process by test security experts. Figure 6 visualizes 
the action sequence of an examinee who was identified as an outlier in the person-level clustering. In 
the “initial item response” stage, this examinee clicked back and forth as he or she moved toward the 
end of the exam. Such action sequences were also regarded as unusual by test security experts, but 
further investigation on these examinee outliers are needed to understand their behaviors and 
intentions.

Figure 6. Visualization of the action sequence of an example examinee who was identified as outlier in the person-level clustering. 
Note: The action types represented by different colors of dots indicate the category of initial response or answer change (BTR=Blank 
to Right; BTW=Blank to Wrong; NC=No Change; RTW=Right to Wrong; WTR=Wrong to Right; WTW=Wrong to Wrong). The vertical 
red line separates the “initial item response” stage and the “item revisit” stage.
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Discussion

This study proposed a data-mining approach to examine test-taking behavior archetypes and detect 
abnormal test-taking behaviors. The proposed method utilizes a variety of process data and relies on 
fewer assumptions than the parametric methods, which makes it a powerful tool to discover subtle 
differences in behavior patterns between the aberrant test-takers and normal test-takers. The outliers 
flagged by the proposed method are also promising starting points to identify the hard-to-define 
aberrant test-taking behaviors like item harvesting.

The proposed method was applied to data from a licensure exam to learn behavioral and examinee 
archetypes as well as detect outliers. Three and four behavioral archetypes were learned in the “initial 
item response” and “item revisit” stages, respectively, based on the action-segment-level clustering. 
The clustering results were stable in the “item revisit” stage but lacking in stability in the “initial item 
response” stage. The meaning of the behaviors was inferred from the characteristics of the behavioral 
archetypes. For example, a behavior of “clicking through without paying attention” was identified as it 
consists of consecutive actions with short response time and few answer changes. Three examinee 
archetypes were found based on the person-level clustering. Outliers were identified at both action- 
segment and person levels. Action sequences of the examinees who displayed multiple outlying 
behaviors or were flagged as outliers at the person level were visualized and inspected. While the 
proposed approach is motivated to detect item harvesters, it is possible that these flagged outliers 
belong to other groups of aberrant test-takers (e.g., carelessness, low motivation). Thus, further 
investigations, such as examining the test center surveillance video, are needed to understand the 
motivation and intention of these examinees.

This study has some limitations and a number of directions remain to be explored in the future. 
First, the proposed method relies on an assumption that the majority of the examinees are normal and 
only a small percentage could be ill-intentioned. Although this assumption can hardly be tested in 
reality, simulation studies could be conducted to examine the effectiveness of the proposed method 
under the conditions with various mixing proportions of examinees.

Second, only a limited number of features were used at both the action-segment- and person-level 
clustering. More features could be incorporated in the future to make the proposed statistical method 
more powerful. Results obtained from other aberrant behavior detection methods (e.g., Van der 
Linden & Guo, 2008; Van der Linden & Jeon, 2012) could also be promising features to be incorpo-
rated in the proposed data-mining procedure. However, it should be noted that there is not a golden 
rule for feature engineering. Insights and a large number of tryouts are needed to develop an effective 
feature engineering scheme. When a large number of features were created, feature selection methods 
could be applied to select useful features.

Third, we only examined the outliers’ action sequences recorded in the analyzed dataset. If the 
outliers are repeated test-takers or if they have taken other licensure exams, it is worthwhile to conduct 
some inter-attempt analyses, examining whether they display consistent behavioral patterns across 
attempts. If future researchers were interested in discovering examinees who display consistently 
suspicious behaviors or inconsistent behavioral patterns across tests, analyses of data from frequent 
exam combinations could be good starting points. Furthermore, some person-level characteristics of 
the outliers, such as the institutions they receive training from and the test centers they take exams in, 
could be investigated as the next step.

Fourth, the proposed method is a statistical method and it, as any other statistical methods, is 
subject to Type I and Type II errors. We would like to echo Van der Linden and Jeon (2012)’s 
proposition that results from the statistical tests should not be the only source of evidence for cheating 
and make analogy to the case of aberrant test-taker detection. The outliers flagged from our proposed 
data-mining method should not serve as the only evidence to determine aberrant test-takers, either. To 
implement the proposed data-mining procedure in production, it is suggested that each outlier 
identified by the data-mining method should be investigated by test security experts and decisions 
on aberrant test-taker classification should be based on both statistical results and qualitative analyses. 
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Thus, a next step would be to develop a structured questionnaire to systematically collect test security 
experts’ judgment on the identified outliers.

As a final note, we would like to return to the motivation of this study – detecting item harvesters. The 
lack of understanding of item harvesters’ behavior patterns (e.g., it remains unknown what the item 
harvesters’ response and response time patterns look like) is the major challenge of identifying item 
harvesters. Even though evidence (e.g., confidential test items being found in public resources) has 
suggested the existence of item harvesters, the processes of determining confirmed cases of item harvesters 
are rigorous and are still in progress. It is our hope that the proposed approach, by identifying more subtle 
aberrant test-takers, increases the probability and efficiency of discovering the elusive item harvesters. The 
development of the statistical methods and obtaining the confirmed cases of item harvesters are mutually 
dependent and iterative. The development of the statistical method increases the chance of discovering the 
confirmed item harvesters, and the knowledge gained from the confirmed item harvesters’ behavioral 
patterns, in turn, contributes to a more clearly specified indicator of the item harvesting behavior and 
informs the improvement of the statistical method. Given that the proposed method is developed with 
little information available about the confirmed item harvesters, the proposed exploratory method serves 
as a starting point to discover the confirmed item harvesters and will evolve as the suspicious item 
harvesters were confirmed. In particular, once a few confirmed cases of item harvesters are found, the 
action sequences of these individuals can be used as labeled data to train the proposed data-mining 
method to achieve better accuracy in classifying item harvester. The ultimate goal of the proposed 
exploratory approach is to help identify predictors that are indicative of item harvesting behaviors. 
Monitoring these predictors could help test security professionals to conduct further investigations and, 
ultimately, the resulting disciplinary actions will have a strong deterrent effect on potential item harvesters.

Notes

1. The means and standard deviations of response time are in terms of log-transformed seconds. A log transforma-
tion was employed to eliminate the strong positive skew of the raw RTs.

2. The qualitative results learned from the “initial item response” stage are presented in Figure A1 in Appendix. 
Cautions need to be taken when interpreting and using the results from the “initial item response” stage.

3. The label switching issue occurs when the label of the same cluster centroid changes across different subsamples. 
To resolve the issue, K’ clusters in each subsample (except the first subsample) are permutated such that the sum 
of the diagonal elements in the two-way frequency table (cross-tabulation of this subsample with the first 
subsample) is maximized.
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Appendix

Figure  A1. Qualitative characteristics of the behavioral archetypes learned from the “initial item response” stage.

Features

Behavioral 
Archetype

Mean response 
timea

Standard 
deviation of 

response timea

Number of 
answer changes

Proportion of 
initial visit

A1
A2
A3

Characteristics of 
centroid valueb High Low

aThe means and standard deviations of response time are in terms of log-transformed seconds. A log transformation was employed 
to eliminate the strong positive skew of the raw RTs. 

bThe 50th percentiles of the feature values in the whole action-segment sample were used as cutoffs to distinguish low and high 
levels of the features.
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