
A Sleeping, Recovering Bandit Algorithm for Optimizing
Recurring Notifications

Kevin P. Yancey
kyancey@duolingo.com

Duolingo
Pittsburgh, Pennsylvania

Burr Settles
burr@duolingo.com

Duolingo
Pittsburgh, Pennsylvania

ABSTRACT
Many online andmobile applications rely on daily emails and push
notifications to increase and maintain user engagement.Themulti-
armed bandit approach provides a useful framework for optimiz-
ing the content of these notifications, but a number of complica-
tions (such as novelty effects and conditional eligibility) make con-
ventional bandit algorithms unsuitable in practice. In this paper,
we introduce the Recovering Difference Softmax Algorithm
to address the particular challenges of this problem domain, and
use it to successfully optimize millions of daily reminders for the
online language-learning app Duolingo. This lead to a 0.5 % in-
crease in total daily active users (DAUs) and a 2 % increase in new
user retention over a strong baseline. We provide technical details
of its design and deployment, and demonstrate its efficacy through
both offline and online evaluation experiments.

CCS CONCEPTS
• Computing methodologies→ Sequential decision making;
• Mathematics of computing → Probability and statistics.

KEYWORDS
Multi-ArmedBandits, NotificationContent Optimization, Bayesian
Approaches, Machine Learning

ACM Reference Format:
Kevin P. Yancey and Burr Settles. 2020. A Sleeping, Recovering Bandit Al-
gorithm for Optimizing Recurring Notifications. In Proceedings of the 26th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (KDD
’20), August 23–27, 2020, Virtual Event, CA, USA. ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/3394486.3403351

1 INTRODUCTION
To keep users engaged and promote recurring usage, many mobile
and online apps send regular email and push notifications to their
users. For Duolingo — the world’s most-downloaded language-
learning app with more than 300 million users — this involves
sending daily practice reminder notifications, such as those shown
in Figure 1. The content of these notifications is generated from

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of thisworkmust be honored.
For all other uses, contact the owner/author(s).
KDD ’20, August 23–27, 2020, Virtual Event, CA, USA
© 2020 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7998-4/20/08.
https://doi.org/10.1145/3394486.3403351

Figure 1: Example daily reminder notifications.

pools of hand-written templates (which may contain slots for user-
specific information) from which a single template is chosen to
generate the content of each notification.

The multi-armed bandit problem provides a well-studied the-
oretical framework for optimizing the selection of templates in
this context. However, two complications arise that makes conven-
tional bandit algorithms unsuitable for our scenario:

(1) “Fresh” templates (which have not been recently seen) tend
to have higher impact on user behavior. Thus, for good per-
formance, it is essential that the bandit algorithm not only
choose templates that performwell in general, but also vary
the selection of templates for each user over time in order
to exploit this novelty effect. Otherwise, the bandit will con-
verge to using the the same template for a given user day
after day, which will get repetitive, desensitize users, and
fail to improve engagement in the long run.

(2) Many templates are based on conditions that are not appli-
cable to all users. For example, some templates in Table 1
reference a user’s “streak wager,” a game mechanic applica-
ble to only a fraction of users on any given day. As such,
each template has defined eligibility criteria to prevent the
template from being sent to an inappropriate user. However,
the standard formulation of the multi-armed bandit prob-
lem assumes that all options are available at all times, and
the violation of this assumption substantially complicates
the evaluation of each option’s performance.

https://doi.org/10.1145/3394486.3403351
https://doi.org/10.1145/3394486.3403351

Table 1: Example templates and their eligibility criteria.

Template Eligibility Criteria
You’re on fire
Continue your 109 day Spanish
streak on Duolingo.

Must have a 3+ day streak.1

Streak wager reminder
You’re on day 2 of your 7-day
streak wager! Now get to day 3!

Must have a streak wager.2

Ready for your trip?
Take 5minutes to practice Italian
now

User’s profile must indicate
travel motivation.

In this paper, we describe the Recovering Difference
Softmax Algorithm, a novel variant of the bandit framework that
addresses these two sub-problems. It has been deployed to select
daily reminders for millions of users at Duolingo, resulting in sub-
stantial lifts in user engagement metrics.

1.1 Related Work
The multi-armed bandit problem [13] is an optimization problem
in which an agent repeatedly chooses from among a fixed set of
arms over some number of rounds. Some amount of reward is ob-
tained each round based upon the arm chosen. In our setting, the
arms represent different notification templates and the rewards
are successful user engagements. Since an arm’s reward can only
be known by choosing it, there is a trade-off between exploration
(choosing an arm to learn more about its expected reward) and ex-
ploitation (choosing the best arm based on current information to
maximize reward). This formalization is applicable to a wide range
of real-world problems and a number of algorithms for this basic
formulation have been proposed and studied, including ϵ-greedy
[16], softmax [17], and Upper Confidence Bound (UCB) [3].

Many variations of the multi-armed bandit problem exist, each
making different assumptions that often require different solutions.
The two variations that most directly relate to the recurring noti-
fications setting studied in this paper are the “recovering bandits
problem” [12] and the “sleeping bandits problem” [10].

In the recovering bandits problem, an arm’s expected reward
is given by an unknown function of the number of rounds since
the arm was last chosen. Pike-Burke et al. [12] propose two ban-
dit algorithms that use Gaussian processes to model the unknown
reward functions. A number of other papers [6, 11, 15] explore a
related problem, known as the “rested bandits problem,” where an
arm’s expected reward depends on the number of times the arm
has been selected previously (rather than the how recently it was
last selected). In reality, both of these factors are likely relevant to
addressing the novelty effect mentioned in the previous section.
However, between the two, recency is probably more essential,
since reminders sentmonths or even years before should have little
impact on their effectiveness today, regardless of their quantity.

1“Streak” means the user has completed a lesson every day for some number of days.
2“Streak wager” is a gamification feature that awards the user extra in-app currency
(i.e., “gems”) for completing lessons on 7 consecutive days.

In the sleeping bandits problem, certain arms may be ineligible
some rounds, as is the case with the templates in our recurring
notifications setting. Kleinberg et al. [10] proposes a theoretical
solution with proven regret-bounds by using the exp4 algorithm
[2] to search for an optimal priority ordering of all arms in A.
However, since there exist |A|! possible orderings, this approach
is intractable when there are more than a handful of arms. Further-
more, this approach isn’t obviously compatible with the solutions
addressing the recovering bandits problem.

In contrast, the Recovering Difference Softmax Algorithm
provides a practical solution that solves both of these sub-problems
simultaneously. Furthermore, while much of the bandit literature
focuses mainly on proving theoretical performance bounds of algo-
rithms, our paper provides both offline and online empirical eval-
uations in a real-world setting.

1.2 Problem Definition and Notation
In our recurring notification optimization setting, any notification
that is sent to any user constitutes a single round. Following con-
vention, individual rounds are denoted with the variable t .

Each arm corresponds to a template that can be chosen. A de-
notes the set of all arms, and At ⊆ A denotes the set of eligible
arms at round t .

Each round, a policy is applied to choose an arm,at , from among
the eligible arms,At .The policy that was applied for a given round,
referred to in reinforcement learning as the “behavior policy” [17],
is denoted bt , which is a discrete probability distribution over At .
Hence, bt (a | t) is the probability that arm a would be selected at
round t under the policy in place during round t . When we use the
historical data to learn a new policy, we denote the new policy π .

The purpose of Duolingo practice reminders is to encourage
users to complete at least one language-learning lesson per day, so
our reward should reflect that. However, a substantial percentage
of our completed lessons are organic: many users will complete
a lesson whether we send a notification or not. It is not possible
to reliably distinguish between organic lessons from notification-
driven lessons, which adds a degree of noise when evaluating the
performance of different arms. To minimize the amount of organic
activity counted in our reward function, we only count lessons that
are completedwithin two hours of the notification.Thus, we define
the reward function, rt ∈ {0, 1}, as follows: the reward is 1 if the
user completes a lesson within two hours of the reminder being
sent, and 0 otherwise.

2 RECOVERING DIFFERENCE SOFTMAX
ALGORITHM

We now describe the Recovering Difference Softmax
Algorithm in detail. The algorithm works by learning and
periodically updating a policy, π , that attempts to maximize
future rewards based on historical observations. For each arm,
a set of prior rounds where that arm was eligible are gathered,
denoted Ha , such that for each t ∈ Ha the reward rt and behavior
policy bt are known. These sets of historical rounds are used to
evaluate the performance of each arm and build the policy π . This
learned policy is applied in future rounds to choose an arm until
the policy is updated again.

Table 2: Reward measures for example template arms.

Template Avg. Reward
When Used

Avg. Reward
When Eligible Rel. Diff.

A 0.2672 0.2682 -0.37 %
G 0.1372 0.1352 +1.48 %
H 0.1332 0.1362 -2.22 %

2.1 Sleeping Arms
As mentioned previously, not all arms are available every round.
This property makes the problem more challenging because eligi-
bility criteria can act as confounding variables with regard to the
reward. For example, if arm A is available to only highly active
users users and arm G is available to all users, then the historical
rounds where arm A was chosen will probably have much higher
reward regardless of the arm’s efficacy.

For example, we see in the first column of Table 2 that if we take
the average reward when a given arm is chosen (independent of
whether the other arms are eligible for those rounds), arm A has
much higher average reward. However, we see in the second col-
umn that this difference is mostly explained by the fact the arms
were eligible to distinct (but possibly overlapping) sets of rounds.
In fact, when we compute the relative difference between the first
two columns, we see that, in fact, arm G has much higher lift, and
that arm A barely performs better than average. For example, con-
sider a user who is eligible for both arms A and G: which arm
should we show them? Among all users eligible for arm A, inde-
pendent of whether they’re eligible for G, we see a lift of −0.37%,
and among all users eligible for arm G, the lift is +1.48%. These
numbers indicate that for this user, we should prefer choosing arm
G.

Hence, choosing the template with the highest average histori-
cal reward, such as is done by conventional bandit algorithms cited
earlier (e.g., ϵ-greedy [16], softmax [17], and Upper Confidence
Bounds (UCB) [3]) may yield poor results.

Furthermore, arms with new eligibility rules are introduced fre-
quently. Thus, as a design constraint, we do not want the bandit al-
gorithm to directly depend on the eligibility rules. Otherwise, the
bandit algorithm implementation would need to be modified each
time a new set of eligibility rules were put into production, greatly
increasing the algorithm’s maintenance cost.

We instead propose a method to measure the efficacy of each
arm while controlling for the effects of its eligibility criteria. We
do this by using the historical rounds, Ha , to estimate the typical
reward when arm a is used, which we denote µ+a , and the typical
reward when the arm a is eligible but a different arm is chosen in-
stead, which we denote µ−a . We then compute a single performance
metric from these by taking the relative difference (see Equation 1).
Since both expectations are estimated from a sample of historical
rounds thatmeet the same eligibility criteria, we effectively control
for the effects of the eligibility criteria on the expected reward.

Since the probability of an arm being used varies from round
to round depending on the policy in use at that time, collecting
all historical instances where an arm was used will not produce a
representative sample: it will be biased towards rounds where the

arm was historically more likely to be used, such as rounds where
there were fewer alternative arms. So, estimating µ+a by computing
a simple average of rewards from the rounds in Ha where arm a
was selected will produce biased results. The same problem arises
when estimating µ−a . We use weighted importance sampling to cor-
rect for this. Specifically, we define the estimates of these variables
as follows:

µ̄+a =

∑
{t ∈Ha |at=a }w

+
t rt∑

{t ∈Ha |at=a }w
+
t
, where w+t = bt (a | t)−1

µ̄−a =

∑
{t ∈Ha |at,a }w

−
t rt∑

{t ∈Ha |at,a }w
−
t
, where w−

t = (1 − bt (a | t))−1

and where at is the arm chosen at round t .
From these two expected reward estimations, we compute the

relative expected reward, referred to as the arm’s score, as follows:3

sa =
µ̄+a − µ̄−a

µ̄−a
(1)

These scores can then be used to compare performance between
arms with distinct eligibility criteria.

2.2 Small Sample-Size Arms
The estimated arm scores from the previous section will have high
variance for arms with small sample sizes (i.e., small |Ha |). This
variance can cause problems when these estimates are used to
choose templates for future rounds. For example, in the case of
very high estimates, the score may outweigh the recency penalty
(described in the next section) enough that the arm will be used re-
peatedly for all eligible rounds until the arm’s score converges to a
more accurate estimation. Worse, an arm may never recover from
an initially low score estimation because it may be so low that it is
virtually never used, even with the exploration enabled by the use
of softmax (described in Section 2.4). In this case, the bandit may
take a long time to collect enough samples for that arm to correct
its initially low estimation.

For example, Figure 2 plots the magnitudes of the scores for all
the arms from the offline evaluation experiment described in Sec-
tion 3.1.We can easily see that armswith small sample sizes tend to
have higher magnitudes. Figure 3 shows the distribution of relative
rewards for arms with a “large” effective sample size (defined here
as being greater than 100,000). The distribution is approximately
normal, with 90 % of the scores being within ±3.4%. However,
only 50 % of arms with smaller effective sample sizes come within
this range, and 38 % dubiously have scores outside ±5%, which
could cause highly degenerate behavior in the bandit, if used as-is.

To regularize these scores, we use empirical Bayes estimation
to shrink both µ̄+a and µ̄−a towards a Bayesian prior. Since both of
these variables are estimates of a proportion4, we define the prior

3One might instead choose to use the absolute difference, µ̄+a − µ̄−a , instead of the rel-
ative difference. It’s not necessarily clear which metric should be better in general. In
our case, we evaluated both metrics in the offline evaluation and found the differences
were negligible. As such, our decision to use relative difference was a pragmatic one:
the relative differences were more intuitive when reporting arm scores to employees
via dashboards.
4This is because our reward function is binary, and so the average reward is the pro-
portion of positive outcomes. A different reward function may warrant a different
prior distribution.

0 1 2 3
·107

0%

2%

4%

6%

8%

Sample Size

s a

Figure 2: Scatter plot showing the absolute value of relative
expected rewards |sa | vs. the sample size from which each
arm score was computed.

−6% −4% −2% 0% 2% 4% 6%
0

20

40

60

Arm Score

#
of

A
rm

s

Figure 3: Histogram of arm scores with large effective sam-
ple sizes (n > 105).

using the beta distribution parameterized with σ and µa such that:
µ+a , µ

−
a ∼ Beta(µa/σ , (1 − µa)/σ)

where µa is the expected reward when arm a is eligible, which is
estimated from each arm, i.e.:

µa =

∑
{t ∈Ha } rt
|Ha |

Here σ represents how much the expected reward varies de-
pending upon which arm is chosen. It can be thought of as the
variance in µ+a − µa across all arms. This is treated as a hyperpa-
rameter that is estimated from all arms that have large sample sizes
(i.e., arms from which we can derived estimates of µ+a with narrow
confidence intervals). In our case, σ was estimated from the data
shown in Figure 3 to be approximately 105.

From the above Bayesian prior, we can derive the posterior es-
timates for µ+a and µ−a as follows:

µ̂+a =
µ̄+an
+
a + µaσ

n+a + σ
µ̂−a =

µ̄−an
−
a + µaσ

n−a + σ

wheren+a andn−a are Kish’s effective sample size [9] for theweighted
samples fromwhich µ̄+a and µ̄−a were computed, respectively, which
are computed as:

n+a =

(∑
{t ∈Ha |at=a }w

+
t

)2∑
{t ∈Ha |at=a }w

+
t
2

n−a =

(∑
{t ∈Ha |at,a }w

−
t

)2∑
{t ∈Ha |at,a }w

−
t
2

We then define a new arm score such that:

ŝa =
µ̂+a − µ̂−a

µ̂−a
(2)

2.3 Recovering Arms
Prior A/B tests5 at Duolingo that introduced new templates tended
to boost notification conversion rates, even when the those new
templates did not outperform existing templates in the long run.
We surmised that this was due to a kind of “novelty effect”: tem-
plates that users had not previously seen generally had positive
impact. Under this hypothesis, the more often and recently a tem-
plate is used for a given user, the less impact it will have.

We address this problem via a parametric approach using a
cognitively-motivated formula. When an arm has previously been
selected for a given user, we apply a recency penalty to its score to
model the lack of a novelty effect. However, we hypothesize that
this penalty should subside as the user’s memory of the prior no-
tification fades. Exponential decay functions have been shown to
model human memory well [7, 14]. Hence, we define a modified
score of arm a for a given round as follows:

s∗a,t = ŝa − γ0.5da,t /h (3)
where da,t is the number of days since arm a was last selected6 for
the user corresponding to round t , and γ and h are both hyperpa-
rameters representing the base recency penalty and decay half-life,
respectively. The latter two are estimated in Section 3.1.2.

2.4 Arm Selection
We use softmax [17] to define a policy to choose arms each round
based upon the previously computed arm scores. Specifically, we
select arm a with probability:

π (a | t) =
exp (s∗a,t /τ)∑

a′∈At exp (s∗a′,t /τ)
(4)

where τ is a hyperparameter that controls the amount of explo-
ration behavior (higher values lead to more exploration).

2.5 Arm Histories
Here we detail how the histories, Ha , are compiled for each arm.
Rather than including all previous rounds where arm a is eligible,
we filter this set to control for variance and to favor more recent
data. We discuss each of these in the following sub-sections.

2.5.1 Controlling Variance. The variance for the estimates of µ̄+a
and µ̄−a increase as n+a and n−a approach zero, respectively. This can
cause very large errors in these estimates when bt (a | t) is very
large or very small, which can happen for arms that are performing
very well or very poorly. To prevent this, we exclude from Ha any
5An A/B test is a form of randomized controlled trial experiment, used to test two
versions of an app. Users are split randomly into buckets, and different business logic
is used depending on the user’s bucket (in this case, different copytext is included in
the notification rotation) and the performance of each bucket is evaluated.
6In the case that arm a has never been selected for the applicable user before, da,t
is treated as infinity, in which case the second term goes to 0 and modified relative
expected reward is simply ŝa .

0 50 100 150 200 250 300
0

200

400

600

Days of History in Ha

#
of

A
rm

s

Figure 4: Histogram of # of days of data needed for an arm
to reach a credible interval of ±0.15.

rounds where bt (a | t) < θ or 1 − bt (a | t) < θ , where θ is a
hyperparameter set to a very small value. In our case, we chose to
set the threshold to 0.5 %7, which only excludes an average of 3 %
of historical rounds.

2.5.2 Favoring More Recent Rounds. The typical reward of an arm
may change gradually over time for a variety of reasons (e.g., sea-
sonal effects, changes in the demographic distribution of users,
etc.). In the bandit literature, this is referred to as non-stationary
rewards [4]. If we include all of the historical rounds for each arm
inHa , then the scores for arms with long histories will change very
slowly, as the new round data becomes diluted in the large history
consisting mainly of very old rounds.

Thus, it makes sense to truncate older rounds in each arm’s his-
tory in order to make the scores more responsive to non-stationary
changes in arm rewards. However, there is a trade-off because trun-
cating too much data will increase variance due to small sample
sizes. To avoid this, we measure this variance using the arm score’s
95 % credible interval and retain only enough data in each arm his-
tory to ensure that interval is smaller than a chosen threshold, φ,
beyond which additional reductions in variance are of little value.
This credible interval can be calculated by multiplying 1.96 by the
arm score’s standard error, which is:

SE(ŝa) =
1

µ̂−a

√
µ̂+a (1 − µ̂+a)
n+a + σ

+
µ̂−a (1 − µ̂−a)
n−a + σ

(5)

For our deployment, we chose ±0.15 percentage points for the
hyperparameterφ.The number of days required to reach this thresh-
old depends on how often the arm is used, whichwill vary based on
its eligibility and performance. Figure 4 shows a histogram of the
number of days of data required to reach this threshold for various
template arms in our deployment.

2.6 Design Trade-offs
In the following sub-sections, we discuss some of the alternatives
and trade-offs made in the design of this algorithm.

2.6.1 Relative vs Absolute Difference. In Equation 2 we use rela-
tive difference to compare the performance between arms (i.e., we
7In principle, it should be possible to find a θ that minimizes the variance for µ̄+a and
µ̄−a for each arm, but we’re not aware of a closed-form solution to this.

normalize the differences by dividing by µ̂−a). Instead, we could
have chosen to use the absolute difference (i.e., µ̂+a − µ̂−a). It is not
clear which is a more representative comparison, and we posit this
is problem-dependent. However, our offline evaluations showed
that both metrics performed similarly, and so the decision for us
was a pragmatic one: since µ̂−a was usually small (≈ 0.13 for most
arms) and the differences between arms were very small (±0.004),
using the relative differences created more relatable scores (±3%)
and also matched how business metrics are often evaluated at our
company: percentage lift over baseline rather than absolute lift.

2.6.2 Distribution of arms under µ−a . The variable µ−a represents
the expected reward when arm a is not chosen. However, this de-
pends on the distribution with which alternative arms are chosen
when arm a is not chosen. In our case, we use the distribution de-
fined by the behavior policy in effect at the time the historical data
was collected.The drawback of this is that µ−a tends to increase over
time as the algorithm learns more optimal policies, which causes
the template scores to drift downwards over time. This downward
drift applies to all arms similarly, so it does not significantly affect
the overall performance of the algorithm. However, this drift ap-
pears counter-intuitive to internal employees because it looks as
if the arms are performing worse over time, when in fact it is sim-
ply an artifact of the baseline moving upwards! Ideally, we would
instead use a fixed (e.g., uniform) distribution of alternative arms
for µ−a , but this would increase the variance in the estimate.

2.6.3 Recovery Formulas. Asmentioned previously, we take a para-
metric approach tomodeling the recovery function for arms. Gauss-
ian process kernels have been proposed for this purpose [12], and
while they may work well for some problems, we believe the para-
metric approach is better suited to our case. Gaussian process ker-
nels require many more than two parameters, and hence would
needmuchmore data to fit accurately. Since the effect size of reusing
recent templates is so small in absolute terms (e.g., around -0.0006
if we reuse the last template, per Table 6), it would likely take an
enormous amount of data to estimate a more complex recovery
function with Gaussian process kernels, and there isn’t much rea-
son to suspect the function being estimated is complex, anyway.

Another option to consider is whether the number of times an
arm has been chosen for a user should be factored in [6, 11, 15] in
addition to the recency. We chose to focus on recency since it is
simpler, and only requires us to know the last time each arm was
used each round, rather than the user’s full history. However, as
future work we plan to experiment with alternative formulas that
incorporate other variables about the user’s prior interaction with
template arms.

3 EVALUATION
In this section, we present two evaluations of the Recovering
Difference Softmax Algorithm:

(1) Offline experiments using Duolingo’s historical data to tune
hyperparameters and estimate the algorithm’s performance
in terms of both the reward and the contribution of various
components of the algorithm.

(2) An online experiment showing the impact of the bandit on
Duolingo’s business metrics after it was rolled out.

Table 3: Summary of the offline evaluation datasets

Dataset Duration Row Count
Train 15 days 88M
Test 19 days 114M

3.1 Offline Log Data Experiments
For offline evaluation, we first collected 34 days of data from the
legacy system, where templates were selected from the eligible
templates at random using the uniform distribution. The data in-
cluded the notification’s timestamp, user ID, list of eligible tem-
plates, selected template, history of templates sent to the same user
over the prior 30 days, and reward (i.e., whether the user completed
a lesson within 2 hours) for each captured round.

We used the first 15 days as training data to learn the arm scores
from which the policy was derived, as described in the previous
section. We reserved the last 19 days as test data. These are sum-
marized in Table 3.

We used off-policy evaluation via weighted importance sam-
pling [8, 17] to estimate the average reward of the policy being
evaluated. Specifically, the average reward for a policy, π , was es-
timated as:

rπ =
1

|T |
∑
t ∈T

π (a | t)
bt (a | t)rt

where T is the set of rounds in the test set, and the behavior policy
bt equals |At |−1 (since the arm each round was selected via the
uniform random distribution in this historical data).

Since exploration will reduce the expected reward in the short
term, we used argmax instead of softmax in the arm selection pol-
icy for our initial experiments. In other words, π (a | t) equals 1
if arm a has the highest modified score s∗a,t among eligible tem-
plates for that round, and 0 otherwise. Additionally, in the offline
experiments, we did not use the empirical Bayes estimation to com-
pensate for the small sample sizes (in effect, σ = 0). This was not
a significant issue, as all arms started with 2 weeks of data and a
followup experiment showed that adding the empirical Bayes esti-
mation after the fact did not significantly change the final policy’s
total reward in the offline experiments.

3.1.1 Offline Experiment 1: Incorporating UI Language. Each of
Duolingo’s push templates are translated into 25 different user in-
terface (UI) languages. The translation that is used for each noti-
fication is based upon what language the user has set as their UI
language to display in the app. We expected that each template
may perform differently depending upon the user’s UI language,
due to nuanced variations in meaning among translations, cultural
differences, and other demographic factors.

When we compute the arm scores for each template on a per-UI
language basis, we do find substantial differences between UI lan-
guages for some templates. For example, Table 4 shows the scores
for three of Duolingo’s templates across three of its most common
UI languages (English, Spanish, and Portuguese). In some cases,
the scores are different by 1 percentage point or more, which is
substantial since the range of most of the scores is only ±3.4%.

Table 4: Differences in arm scores by UI language.

Template en es pt
A 0.13% −0.74% −1.77%
F −1.60% 0.62% 0.19%
L 1.13% 2.98% 2.17%

Table 5: Results from offline experiment 1 (UI language).

Bandit Algorithm Avg. Reward (r) Rel. Diff.
±0.00015

Baseline (random) 0.1295 -
Template 0.1311 +1.2%
Template+UI Language 0.1318 +1.8%

As such, our first experiment evaluated two variations of the
bandit algorithm: one where each template corresponded to a sin-
gle arm, and another where each template+UI-language pair was
treated as a distinct arm. For this experiment, we ignored the re-
cency penalty, effectively making it 0. Both were compared to a
baseline where the template was chosen at random using the uni-
form distribution, as it was in the legacy system.

The results are presented in Table 5. As expected, both varia-
tions of the bandit algorithm beat the random baseline, gaining
more than 1% lift in reward. However, the variation that treats
each template+UI-language pair as a distinct arm performs sub-
stantially better than the one-template-per-arm variation (1.8 % vs
1.2 %), confirming that it is worthwhile to take the different trans-
lations of each template into account when scoring arms.

In principle, it’s possible to incorporate other user properties
(such as region, device type, age, etc.) in a similar manner to exploit
other differences in template performance between users. How-
ever, this would greatly multiply the number of arms, and thus the
amount of data needed to estimate arm scores. Hierarchical mod-
eling or contextual bandit approaches [1, 5] could address these
concerns, but we leave them for a future work.

3.1.2 Offline Experiment 2: Estimating the Recency Penalty and
Half-life. We also evaluated the effects of the recency penalty de-
scribed in Section 2.3. Based upon previous A/B tests at Duolingo,
we guessed that the recency penalty should mostly decay within
the span of a few weeks to a month, and so we chose a half-life of
15 days. We then performed a grid search to estimate an optimal
value for γ . As shown in Figure 5, the maximum is around 0.017.

We then compared the performance of the policy with the re-
cency penalty to three baselines: a policy where the arms are se-
lected with the uniform random distribution, a policy that always
chooses the same arm as was last chosen for that user, and the
template+UI language policy from the previous section.

The results are presented in Table 6. We see that the policy with
the recency penalty beat the one from the last section by 0.2 per-
centage points (p < 0.1). However, this is likely an underestimate
of the gain in reward for applying the recency penalty in produc-
tion. This is because of a feedback effect that is not corrected for

10−2 10−1

0.1317

0.1318

0.1319

0.1320

γ

Av
g.
R
ew

ar
d
r

Figure 5: Average reward for values of γ (given h = 15).

Table 6: Results from offline experiment 2 (recency).

Bandit Algorithm Avg. Reward r Rel. Diff.
±0.00015

Baseline (random) 0.1295 -
Reuse Last Template 0.1289 -0.5 %
Template+UI Language 0.1318 +1.8 %
Template+UI Language 0.1320 +1.9 %

w/ Recency Penalty

in our offline evaluation setup: under the optimized bandit pol-
icy, high-peforming arms are likely to have small da,t since they
are more likely to have been selected in previous rounds, whereas
these are uncorrelated in the test dataset since arms were selected
using the uniform distribution.8 However, the baseline with a pol-
icy that always reuses the last template gives us an idea of how
important the recency penalty is in production: reusing the same
template (as the bandit algorithm would often do if the recency
penalty were not applied) hurts reward by 0.5 %.

3.2 Online User Experiment
Following the offline evaluation, we evaluated the algorithm in
production using an online controlled experiment (i.e., A/B test)
for Duolingo’s millions of daily practice reminders. Based on the
results from the offline experiments, we scored one arm for each
Template+UI Language pair, using γ = 0.017 and h = 15. See Sec-
tion A for more details on the production system.

Unlike with the offline experiments, we wanted the bandit to
exhibit some exploration behavior in production so that it could
adapt to non-stationary changes in arm performance and to al-
low new templates to be introduced. Instead of choosing arms via
argmax, we used softmax, which includes a hyperparameter τ to
control the amount of exploration. Table 7 summarizes our offline
evaluation to estimate the short-term impact of different values of
τ .9 Based on this, we selected a value of 0.0025, whichwe estimated
would allow a reasonable amount of exploration while retaining
more than 90% of the potential gains.

8For this same reason, the γ estimated via grid search in the previous paragraph may
be underestimated. But, subsequent production A/B tests showed that increasing γ
even to as much as 3.4 did not significantly impact business metrics.
9We should emphasize that, since the training dataset is fixed in this offline setup, this
experiment only estimates the short-term cost of exploration. Hence, these results do
not imply that argmax would yield the best the reward in production in the long-run.

Table 7: Estimated impact of τ values on average reward.

Algorithm Avg. Reward (r) Rel. Diff. Explore %†

Baseline (random) 0.1295 - 89 %
softmax τ = 0.0200 0.1306 +0.8 % 73%
softmax τ = 0.0100 0.1311 +1.2 % 57%
softmax τ = 0.0050 0.1316 +1.6 % 35%
softmax τ = 0.0025 0.1319 +1.9 % 17%
argmax 0.1320 +1.9 % 0%
† percent of the time the top-scoring arm is not chosen

During the test, a subset of Duolingo’s users were split ran-
domly between two experimental conditions: control and experi-
mental. The control group’s templates would be selected via the
legacy algorithm (i.e., using a uniform random distribution over
the eligible templates each round). Since the pools of templates
and other aspects of the notification system had already been op-
timized through years of A/B tests, this provided a strong baseline
to compare against. The experimental group’s templates would be
selected using the bandit algorithm as described in this paper. We
tracked a variety of business metrics, but themainmetrics wewere
interested in were:

Daily Active Users (DAUs): The number of distinct users in
the bucket that opened and interacted with the Duolingo
application on their device each day.

Total Lessons Completed: The total number of language
lessons that users in the bucket completed.

DX Recurring Retention: The percentage of users who
opened the Duolingo app on a given day who also did so
X days later. This is further divided into new users (those
whose accounts were created less than 48 hours before their
first notification in the experiment) and existing users.

We expected the short-term impact on DAUs to be less than the
1.9% boost in the 2-hour conversion rate predicted by the offline
evaluation. This is because there is a significant amount of organic
activity not originating from push notifications that would dilute
the gains. On that basis, we hypothesized an increase in DAUs of
0.5–1.5 %. We expected similar gains in lessons completed. We also
expected gains in recurring retention, but the magnitude of the
impact was more difficult to predict.

Table 8 summarizes the results of our online user experiment
after two weeks. We do in fact see a gain in daily active users and
lessons completed of 0.5% and 0.4%, respectively. More striking,
however, is that new user recurring retention increased by 2%,
showing that the optimized reminders significantly help in retain-
ing new users (a critical component to an app’s growth). This may
be because the behavior of new users may be more sensitive to
these kinds of optimizations, while their daily interaction with the
app is still establishing habitual routines.

After the experiment completed, the bandit was launched to all
users. Five months later, the bandit’s performance in production
was re-evaluated against a holdout set created by randomly using
the uniform arm selection policy for 5 % of rounds (see Section A.4

Table 8: Operational A/B test results.

Metric Gain

Daily Active Users (DAUs) +0.5% *

Total Lessons Completed +0.4% *

Existing User D1 Retention +0.5% *

Existing User D7 Retention +0.2%

New User D1 Retention +2.2% *

New User D7 Retention +2.0% *

* statistically significant (p < 0.05)

for details).The 95% of rounds that used the bandit’s optimized pol-
icy had 2.5 % higher reward than the holdout set, further demon-
strating that the bandit continues to maintain business gains on
par with what was predicted in our offline experiments.

4 CONCLUSION
In this paper, we have introduced the Recovering Difference
Softmax Algorithm, a novel and practical multi-armed bandit
variant for optimizing the content of recurring notifications. This
algorithm solves a pair of key problems that are common in this
setting that were not adequately addressed in the literature pre-
viously. Via offline evaluations, we demonstrated how the rela-
tive difference scoring and recency penalties — the latter of which
was inspired by cognitively-motivated theories about novelty ef-
fects — each contribute to maximizing the reward.We furthermore
showed via our online evaluation that the algorithm can be practi-
cally scaled to millions of users to boost user engagement.

Going forward, we plan to apply this algorithm to other types
of messages, media, and calls to action; to experiment with recov-
ery formulas that model quantity in addition to recency; and to
incorporate additional features that will yield more personalized
reward predictions for each user. To facilitate further research in
this area, we have made a version of the data for our experiments
in Section 3.1 available at: https://doi.org/10.7910/DVN/23ZWVI.

ACKNOWLEDGMENTS
We would like to offer our special thanks to our colleagues, Klin-
ton Bicknell, Andrew Runge, Chris Brust, and Will Monroe, who
provided invaluable feedback in the writing of this paper.

REFERENCES
[1] Peter Auer. 2002. Using confidence bounds for exploitation-exploration trade-

offs. Journal of Machine Learning Research 3, Nov (2002), 397–422.
[2] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of

the multiarmed bandit problem. Machine learning 47, 2-3 (2002), 235–256.
[3] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. 2002. The

nonstochastic multiarmed bandit problem. SIAM journal on computing 32, 1
(2002), 48–77.

[4] Omar Besbes, Yonatan Gur, and Assaf Zeevi. 2014. Stochastic multi-armed-
bandit problem with non-stationary rewards. In Advances in neural information
processing systems. 199–207.

[5] Wei Chu, Lihong Li, Lev Reyzin, and Robert Schapire. 2011. Contextual ban-
dits with linear payoff functions. In Proceedings of the Fourteenth International
Conference on Artificial Intelligence and Statistics. 208–214.

[6] Corinna Cortes, Giulia DeSalvo, Vitaly Kuznetsov, Mehryar Mohri, and Scott
Yang. 2017. Discrepancy-based algorithms for non-stationary rested bandits.

arXiv preprint arXiv:1710.10657 (2017).
[7] Hermann Ebbinghaus. 1885. Memory: a contribution to experimental psychol-

ogy. 1885. New York: Teachers College, Columbia University (1885).
[8] Daniel G Horvitz and Donovan J Thompson. 1952. A generalization of sampling

without replacement from a finite universe. Journal of the American statistical
Association 47, 260 (1952), 663–685.

[9] Leslie Kish. 1965. Survey Sampling.] ohn Wiley. New York (1965).
[10] Robert Kleinberg, Alexandru Niculescu-Mizil, and Yogeshwer Sharma. 2010. Re-

gret bounds for sleeping experts and bandits. Machine learning 80, 2-3 (2010),
245–272.

[11] Nir Levine, Koby Crammer, and Shie Mannor. 2017. Rotting bandits. InAdvances
in neural information processing systems. 3074–3083.

[12] Ciara Pike-Burke and Steffen Grunewalder. 2019. Recovering Bandits. In Ad-
vances in Neural Information Processing Systems. 14122–14131.

[13] Herbert Robbins. 1952. Some aspects of the sequential design of experiments.
Bull. Amer. Math. Soc. 58, 5 (1952), 527–535.

[14] Burr Settles and Brendan Meeder. 2016. A trainable spaced repetition model for
language learning. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics. ACL, 1848–1858.

[15] Julien Seznec, Andrea Locatelli, Alexandra Carpentier, Alessandro Lazaric, and
Michal Valko. 2018. Rotting bandits are no harder than stochastic ones. arXiv
preprint arXiv:1811.11043 (2018).

[16] Aleksandrs Slivkins et al. 2019. Introduction tomulti-armed bandits. Foundations
and Trends® in Machine Learning 12, 1-2 (2019), 1–286.

[17] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

A DEPLOYMENT DESIGN
In this appendix, we discuss how the Recovering Difference
Softmax Algorithm was productionized at scale at Duolingo to
optimize its push notifications.

A.1 Architecture
Figure 6 diagrams how the bandit algorithm was integrated with
Duolingo’s notification service. The main components of the ban-
dit are identified by the dashed box.

Each time a notification is sent, the selected arm and other infor-
mation needs to be captured so that the reward can be calculated
and the arms can be scored. We refer to this as the “Decision Log”.
The minimum information needed to support the algorithm is de-
scribed in Table 9. The decision log must handle a large volume of
writes, rows are never updated once inserted, and data is retained
indefinitely, so we chose to implement the decision log using a data
streaming service, writing to flat files that can later be processed
via Spark or another big data framework.

In addition, an auxiliary database, referred to in the diagram
as the User Arm History, is used to track the last time each arm
was selected for each user. This is needed to calculate the recency
penalties each round. Since, unlike the decision log, this data is
frequently overwritten, a relational database or key-value store is
well-suited for this purpose.

The Scorer runs as a batch job to compute and update each
arm’s score. It does this by joining the decision log data with event
information stored in the events database to compute the reward
for each decision.The arm scores are written to a data store, which
is read and used by the Arm Selector. The Arm Selector inte-
grates with the notification service and decides which arm to use
for each send. It is provided a list of eligible arms, and it queries the
Arm Scores and User Arm History data stores to compute the
probability for each arm using Equation 4. It then uses a random
number generator (RNG) function to select the arm using those

https://doi.org/10.7910/DVN/23ZWVI

decision
logs

decision
logger

event
logger

notification
sender

arm
selector

scorer

arm
scores

user arm
histories

event
logs

BANDIT SYSTEM

Figure 6: System diagram of our deployment architecture.

Table 9: Minimal list of decision log fields.

Name Type Description
Timestamp DateTime The date and time that the bandit decision was made.
User ID UserID Identifies the user that the decision applies to. This along with timestamp are used to compute

reward when reconciling the data with the metrics database.
Arm Prob. Map[ArmID, float] A map of the pre-decision probability of each arm being selected. This is used to determine

which arms were eligible and to compute the importance weights when estimating µ+a and µ−a .
Selected Arm ArmID The arm that was selected.

probabilities and logs the decision via the Decision Logger be-
fore returning the selected arm to the notification sender, which
then applies the corresponding template.

A.2 Introducing New Arms
The design of the bandit system allows new templates to be intro-
duced without any special handling. Without historical data a new
arm’s score will be computed as 0. The recency penalty and explo-
ration provided by softmax means that the bandit algorithm will
occasionally try new templates so that data can be collected, and
a more accurate score can be estimated.

A.3 Batch Processing Arm Scores
As mentioned previously, the arm scores are updated via a batch
process daily, rather than immediately after the reward of each de-
cision is known. So that millions of rows do not have to be repro-
cessed each time the batch job runs, values for µ̄+a , µ̄−a , n+a , and n−a
can be computed from a single day’s data and saved. Those daily
values can then be aggregated to compute the complete arm scores.

The batch processing greatly simplifies the arm score update
process and makes it more scalable. However, this delays the feed-
back loop between a decision and an arm’s score being updated.
Most bandit algorithms, in fact, assume instantaneous feedback.
This is not a significant drawback for our application, however, be-
cause the arm scores do not change much in a single day. In fact,
it takes roughly 1–5 weeks of data to narrow the 95 % confidence

interval to ±0.15 percentage points for most arms (see Figure 4).
However, this does mean that the use of Bayesian priors to regular-
ize relative reward estimates for small sample sizes, as described
in Section 2.2, is very important. Otherwise, even a very poor tem-
plate could initially get a very high arm score (because of the small
sample size of its historical data) and so would get used almost ex-
clusively once the arm scores were updated. In that case, without
the Bayesian priors, it would take the bandit algorithm a full day
to correct its mistake.

A.4 Holdout Set
5 months after launching the algorithm, we added a provision that,
for a small percentage of rounds (5%), the arm is selected using the
random uniform distribution instead of the bandit’s learned policy.
This small holdout set has a very small impact on the gains of the
algorithm, while providing two advantages:

(1) It provides us a way to monitor the bandit’s ongoing per-
formance and detect if the bandit ever fails to beat the ran-
dom baseline, as might happen if a bugwere introduced that
would otherwise be too subtle to be noticed.

(2) It provides valuable training data, especially for arms that
perform poorly and are thus rarely used by the bandit algo-
rithm. The probabilities for these templates can get so low
that the importance weighting creates high variance in the
arm score estimates. The training data provided by this 5%
holdout set can offset that.

	Abstract
	1 Introduction
	1.1 Related Work
	1.2 Problem Definition and Notation

	2 Recovering Difference Softmax Algorithm
	2.1 Sleeping Arms
	2.2 Small Sample-Size Arms
	2.3 Recovering Arms
	2.4 Arm Selection
	2.5 Arm Histories
	2.6 Design Trade-offs

	3 Evaluation
	3.1 Offline Log Data Experiments
	3.2 Online User Experiment

	4 Conclusion
	Acknowledgments
	References
	A Deployment Design
	A.1 Architecture
	A.2 Introducing New Arms
	A.3 Batch Processing Arm Scores
	A.4 Holdout Set

