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Abstract

Collecting (or “sampling”) information that one expects to be useful is a powerful way to facil-

itate learning. However, relatively little is known about how people decide which information is

worth sampling over the course of learning. We describe several alternative models of how people

might decide to collect a piece of information inspired by “active learning” research in machine

learning. We additionally provide a theoretical analysis demonstrating the situations under which

these models are empirically distinguishable, and we report a novel empirical study that exploits

these insights. Our model-based analysis of participants’ information gathering decisions reveals

that people prefer to select items which resolve uncertainty between two possibilities at a time

rather than items that have high uncertainty across all relevant possibilities simultaneously. Rather

than adhering to strictly normative or confirmatory conceptions of information search, people

appear to prefer a “local” sampling strategy, which may reflect cognitive constraints on the pro-

cess of information gathering.
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1. Introduction

A cornerstone of many educational philosophies is that people learn more effectively

when they direct their own learning experience (Boekaerts, 1997; Bruner, 1961).

Although there are many ways that such control might influence learning, one important

factor is the ability to choose among different sources of information, a decision-making

process we refer to as self-directed information sampling (Gureckis & Markant, 2012). A
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canonical example of this type of decision making is a doctor deciding which diagnostic

test to perform on a sick patient (e.g., either an MRI or a blood test). Given a set of ill-

nesses that may be causing the patient’s symptoms, the physician must decide whether a

particular test, whose outcome is as yet uncertain, is most likely to reveal the correct

diagnosis. The doctor plays a vital role in this assessment, relying on knowledge of the

patient and potential illnesses to determine the value of a new source of information.

Relative to our understanding of how people evaluate alternatives and manage uncer-

tainty in economic decision making (Glimcher & Rustichini, 2004; Kahneman & Tversky,

1979; von Neumann & Morgenstern, 1944), less is known about how people judge the

usefulness of new sources of information during learning in order to make sampling deci-

sions. The goal of the present paper is to advance our understanding of this aspect of

human decision making and learning.

1.1. Two views on human information sampling

Existing studies of information sampling have contributed to two, seemingly contra-

dictory, theoretical positions. On one hand, a large body of work on hypothesis testing

and reasoning suggests that people prefer to sample information that is consistent with

their existing beliefs even though that information may be ineffective for learning

(Klayman, 1995; Nickerson, 1998), a behavior we refer to as confirmatory sampling.
One well-known example of this is the positive test strategy (PTS), whereby people

focus on observations that are positive examples of their current hypothesis, without

accounting for how those observations relate to alternative hypotheses (Klayman &

Ha, 1987, 1989). In general, confirmatory sampling suggests a singular focus on an

existing hypothesis and the data that are likely to be observed if it were true, while

alternative hypotheses are neglected, often resulting in information that is less useful

for learning.1

In contrast, a separate line of research has argued that people’s information sam-

pling decisions are consistent with normative principles, according to which alternative

hypotheses are integrated to determine what information is most useful for adjudicating

between them (see Nelson, 2005 for review). This normative framework, based on the-

ories of “optimal experimental design” first developed in the statistics literature (Fedo-

rov, 1972; Lindley, 1956), has accounted for sampling decisions in a range of

information search tasks (Nelson, McKenzie, Cottrell, & Sejnowski, 2010; Oaksford &

Chater, 1994), including relatively open-ended or complex domains such as visual

search (Najemnik & Geisler, 2005), spatial search (Gureckis & Markant, 2009; Mark-

ant & Gureckis, 2012), causal structure learning (Steyvers, Tenenbaum, Wagenmakers,

& Blum, 2003), and sequence learning (Austerweil & Griffiths, 2011). As demon-

strated by Nelson (2005), different normative models within this framework (e.g.,

probability gain or information gain) may predict distinct sampling decisions depend-

ing on the task structure and the learner’s goal, but as a group they share the principle

of integrating across all possible hypotheses to determine the most useful source of

information.
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1.2. An intermediate position

Although these two perspectives have long been considered to be in opposition to each

other, they can also be viewed as two endpoints along a continuum representing the

degree to which information from multiple hypotheses contribute to behavior. Confirma-

tory sampling is consistent with a single hypothesis controlling behavior while normative

information selection usually implies combining information from all viable hypotheses.

Where people fall along this continuum may depend on their ability to consider alterna-

tive hypotheses and their relationships to possible outcomes, which may be limited in

complex problems involving large numbers of hypotheses or other demands. For example,

individual differences in working memory capacity predict how many alternatives influ-

ence judgments about the probability of a focal hypothesis, thereby determining how well

people’s judgments correspond to normative predictions (Dougherty & Hunter, 2003;

Newstead, Thompson, & Handley, 2002; Sprenger et al., 2011). Predicting how people

make sampling decisions may thus require an understanding of the cognitive constraints

that limit performance in any particular task.

This perspective on information sampling, with confirmatory and normative sampling

representing two extreme positions, raises a number of questions. First, there is the prob-

lem of formalizing intermediate models that make use of alternative hypotheses but to a

lesser extent than predicted by normative theories. This idea is closely related to recent

models of approximate Bayesian inference, which link sub-optimal learning or decision

making to an impoverished representation of the hypothesis space (Griffiths, Vul, & San-

born, 2012; Sanborn, Griffiths, & Navarro, 2010). There have been few attempts as yet,

however, to define such a framework in the context of human information sampling (but

see Steyvers et al., 2003, for a similar approach in a causal learning setting). In what fol-

lows, we describe one approach to formalizing intermediate models inspired by contem-

porary research in active machine learning (AML).

Second, it is as yet unclear what task or environmental circumstances might lead to

sampling behavior that is better described by an intermediate model. For example, for

certain kinds of hypothesis spaces, confirmatory sampling is consistent with normative

goals, precluding the need to consider more than one alternative (Austerweil &

Griffiths, 2011; Klayman & Ha, 1987; Navarro & Perfors, 2011; Nelson & Movellan,

2001). Learners who correctly account for these constraints might be expected to show

more or less confirmatory sampling depending on the problem space. Similarly,

previous work has shown that prior experience with a domain is associated with

normative sampling, such as when dealing with familiar materials (Cox & Griggs,

1982; McKenzie, 2006) or in problems involving social information gathering (Trope &

Mackie, 1987).

One relatively unexplored possibility that we consider in the present paper is that inter-

mediate strategies are likely to manifest in sufficiently complex problems. One strategy

for collecting information in complex or multivariate domains is to decompose a problem

into simpler components and to reduce “local” sources of uncertainty. For example, when

multiple features may be related to an outcome, a learner might hold one feature constant
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while varying the other across multiple samples (Avrahami et al., 1997; Rottman & Keil,

2012), which is known as the “control of variables” strategy and is essential to scientific

reasoning. Isolating variables helps people to search the space of potential hypotheses

(Klahr & Dunbar, 1988) and is a key part of “learning to learn” about complex concepts

(Kuhn & Dean, 2005). As a result of using this strategy during self-directed learning,

sampling decisions may be better described by a model that focuses on local sources of

uncertainty relevant to subsets of alternative hypotheses, rather than strictly confirmatory

or normative accounts.

In this paper, we present a direct test of the idea that people prefer local sources of

uncertainty when making sampling decisions, using a category-learning paradigm in

which they control the selection of training items. We show that in this kind of problem,

uncertainty about how to classify an item is directly related to how informative it is about

the true category rule, raising the possibility that people rely on their uncertainty about

how to predict the outcomes of potential queries in order to decide between them. This

proposal is directly inspired by research on AML, in which such uncertainty sampling is

a common, computationally efficient method for selecting training data for artificial clas-

sifiers. We describe a range of sampling models that vary in the degree to which they

integrate information about alternative categories to predict what information is useful to

sample. We then present an experiment designed to test between these alternative

accounts of information sampling. After reporting the results of our experiment and sub-

sequent modeling, we discuss the implications of this work for our understanding of how

people direct their own learning.

2. Uncertainty sampling in AML

Effectively gathering information during learning is a problem that faces machine

learners just as it affects human learners. A crucial factor in machine learning is the

availability of labeled training data, which often requires costly human annotation. For

example, credit card companies rely on automated systems for detecting fraudulent

activity, but a human reviewer needs to label such instances before they can be used

for supervised training of a classifier. Given the high costs of labeling, only instances

that will improve the performance of the model should be selected for review. AML

research has explored how selections should be made in order to maximize the accu-

racy of a machine learning model (Settles, 2012), with applications in a wide range

of settings, including text classification (Olsson, 2009), natural language processing

(Settles & Craven, 2008), and recommendation systems (Rubens, Kaplan, & Sugiyama,

2011).

Early work on AML (e.g., Cohn, Ghahramani, & Jordan, 1996; Mackay, 1992) drew

upon the same framework of optimal experimental design that has guided recent psycho-

logical research. Accordingly, the same set of normative models explored in studies of

human information sampling have been applied to problems involving machine

classifiers. These models are often “prospective” in that they estimate the value of an
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observation by simulating the effect of each of its possible outcomes on the current

model. For example, given a potential training item, information gain formalizes the

reduction in uncertainty that would be achieved for each possible labeling (e.g., a

reviewer identifying a transaction as fraudulent or not), and the overall expected value

of selecting that item is found by weighing each outcome’s value by its predicted likeli-

hood of occurring.

However, determining the best selection strategy in this way is computationally intrac-

table in many machine learning applications. As a result, researchers have also developed

methods for sampling an item based on a model’s current uncertainty in how to classify

it (a measure which does not require estimating the effect of observing that item). In

comparison to prospectively evaluating the optimal decision, using the model’s current

classification uncertainty to decide what to learn about is less costly and in many cases

achieves similar improvements in efficiency.

In the following sections, we describe a set of simple models, originally proposed in

the AML literature (Settles, 2012), which predict the value of new information based on

classification uncertainty. Importantly, these models vary in the way that uncertainty

about alternative categories is integrated to make a sampling decision. For a potential

training item x, there is a set of possible category labels fy1; y2; . . .g that could result

from observing that item. The probability of each category label being assigned to x is

given by the distribution p(y|x). The key way that the models differ is in how that proba-

bility distribution is used to predict whether x should be sampled.

2.1. Information gain and label entropy

The first uncertainty sampling model we consider is label entropy, which is defined as

the Shannon entropy over the label distribution p(y|x) for an observation x (see Settles,

2012):

LEðxÞ ¼ �
X

i

pðyijxÞln pðyijxÞ: ð1Þ

Shannon entropy measures the disagreement in predictions across possible labels for an

item.2 Entropy is highest when the model predicts each label equally, and it is lowest

when a certain prediction is made for a single label. Thus, label entropy quantifies the

amount of predictive uncertainty the observer has for item x. Those items that the obser-

ver has difficulty predicting the class membership for are assumed to be useful to

observe, as they represent some aspect of the world where the learner is uncertain and

would benefit from feedback.

While label entropy is commonly used in AML systems, it is also closely related to nor-

mative models that are used in cognitive psychology (Klayman & Ha, 1987; Nelson &

Movellan, 2001; Oaksford & Chater, 1994; Steyvers et al., 2003). In fact, when hypotheses

are deterministic (i.e., the likelihood of an observation is either 1 or 0 for all possible

hypotheses), label entropy is formally equivalent to information gain, a prospective
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normative model that has been used to account for sampling behavior in a number of tasks.

Information gain is defined as the reduction in uncertainty resulting from a new observation

x. Having observed a previous set of observations D ¼ fhx; yi1; hx; yi2; . . .g, uncertainty is

given by the Shannon entropy of the posterior distribution (now defined over a hypothesis

space H with uniform prior likelihood):

IðpðhjDÞÞ ¼ �
X

h2H
pðhjDÞln pðhjDÞ ð2Þ

¼ �ln
1

N
¼ ln N ð3Þ

where N indicates the number of hypotheses in H that are consistent with the observa-

tions in D. Information gain is the reduction in uncertainty that would occur as a result

of observing that item x has label yi:

IGðhx; yiiÞ ¼ IðpðhjDÞÞ � Iðpðhjhx; yii;DÞÞ ð4Þ

¼ ln N � ln Ni ¼ ln
N

Ni
ð5Þ

where Ni is the number of remaining hypotheses that are consistent with x having label

yi. Since the outcome of the observation is unknown, the expected information gain is

weighted by the probability of each outcome occurring:

E½IGðhx; yiÞ� ¼
X

i

pðyijxÞIGðhx; yiiÞ ð6Þ

¼
X

i

pðyijxÞln N

Ni
ð7Þ

¼ �
X

i

pðyijxÞln Ni

N
ð8Þ

¼ �
X

i

pðyijxÞ ln pðyijxÞ ð9Þ

Note that Eq. 9 is the same as the definition of label entropy in Eq. 1. Thus, for deter-

ministic hypotheses, the expected information gain of a query (evaluated one step ahead)

is equivalent to the entropy measured over its possible outcomes. This is maximized

when an item is “globally” uncertain such that all outcomes have equal probability. If

hypotheses have uniform prior probability (as is the case here), this occurs when each

outcome is predicted by an equal number of plausible hypotheses.
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This analysis provides a connection between one uncertainty sampling model (label
entropy) and a prospective model (information gain) that has been used as a normative

standard for understanding human behavior. When dealing with deterministic hypotheses

the two approaches are identical, and sampling according to label entropy is consistent

with a normative model that takes into account the full set of hypotheses.

2.2. Margin sampling

While focusing on items that are globally uncertain or unpredictable seems intuitively

useful, there is reason to expect that it may not be the sampling strategy humans use, par-

ticularly when learning in complex, multivariate environments. One natural strategy, not

captured by label entropy, might be to decompose a complex task into a set of simpler

problems. We can formalize the strategy of focusing on separate components in a sam-

pling model that values uncertainty about any boundary between only two categories.

Label margin predicts that the learner will prefer instances for which the likelihood of

any two categories is similar, independent of any other categories. When the label distri-

bution P(y|x) is ordered from highest to lowest probability fp1; p2; . . .g, with p1 indicat-

ing the highest label probability, label margin is based on the difference between the two

most likely labels for x:

LMðxÞ ¼ 1� ðp1 � p2Þ ð10Þ

Critically, label margin is not maximized for only those items about which the learner is

globally uncertain. Instead, there is a preference for local sources of uncertainty between

subsets of potential outcomes. Whereas label entropy integrates information about all pos-

sible labelings of an item, label margin relies on the two most likely outcomes, disregard-

ing the rest of the label distribution. As discussed above, this model thus reflects an

intermediate sampling model in that a subset of possible alternatives (e.g., different cate-

gories) is used to evaluate whether a potential training item is worth learning about.

2.3. Most certain

Finally, previous work on hypothesis testing suggests that people may prefer items that

they can already classify with relative confidence. People have a well-documented bias

toward seeking positive evidence of the hypothesis they are considering (Klayman & Ha,

1989; Wason, 1960). To quantify this strategy, we define the most certain measure as:

MCðxÞ ¼ maxðpðyjxÞÞ ð11Þ

The predictions of this model directly contrast those of label entropy, with the highest

value assigned to items that can already be classified with confidence. The most certain
measure is one way of instantiating confirmatory sampling—it shows a preference for

items for which the learner has a strong prediction about the category label.
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3. Empirical studies of information sampling during category learning in humans

In a recent study, we examined the interaction of self-directed information selection

and category learning (Markant & Gureckis, 2014). In this experiment, people learned

about two categories of “antennas” that varied along two perceptual dimensions (circles

that differed in size and the orientation of a central line segment, see Fig. 1) and received

one of two television stations (CH1 or CH2). We compared a self-directed condition, in

which participants designed stimuli to learn about, with a standard, passive condition in

which instances were generated from predefined distributions. A main finding from this

study was that for simple uni-dimensional rules, self-directed learners acquired the correct

category rule faster than passive learners (see also Castro et al., 2008).

In light of evidence that self-directed sampling can speed learning, it is important to

understand how people decide what data to collect. Given a potential observation, what

information do people rely on to decide if it will be useful? As we have proposed above,

one aspect that may explain a person’s decision to sample an item is his or her uncertainty

in how to classify it. Intuitively, a self-directed learner should direct his or her attention to

items that are high in uncertainty while ignoring items that can already be confidently clas-

sified or predicted. Consistent with this strategy, the pattern of stimuli sampled by self-

directed learners in our previous study revealed that participants systematically directed

their samples toward the category boundary as the task progressed (see Fig. 1B), suggesting

a preference for items that they were uncertain about how to classify.

However, from that study we were unable to identify which sampling model best

accounted for people’s decisions. One reason for this is that we did not directly measure

Fig. 1. (A) Abstract stimulus space used in Markant and Gureckis (2014), which is adapted for the current

study. Stimuli were “loop antennas” that varied in diameter and orientation. Antennas were assigned to one

of two categories based on the channel they received (“CH1” or “CH2”). Participants “designed” a stimulus

they wanted to learn about using the mouse. Clicking the mouse button reveals the category membership of

the item. (B) The pattern of sampling behavior observed by self-directed learners in Markant and Gureckis

(2014) across eight training blocks. Each dot represents a single stimulus which was selected by a participant

and is plotted in the stimulus space. In the first block, participants distributed samples widely over the entire

stimulus space but then gradually focused their choices on the region surrounding the category boundary.

(The category boundary has been rotated to always appear vertically in these plots.)
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participants’ uncertainty about the items they decided to learn about, and uncertainty

can’t be directly inferred from the items chosen. A given item might be associated with

either high or low subjective uncertainty depending on how much a person has learned,

regardless of where it falls in the stimulus space.

In addition, the binary classification task precludes a comparison of the label entropy and
label margin models, both of which make highly similar predictions in that task, as seen in

the top row of Fig. 2. Each heatmap describes the value assigned to a potential observation

depending on the learner’s uncertainty in how to classify it. For example, an item that can

be confidently classified (e.g., p(y|x) = (1,0), corresponding to the left edge of the heatmap)

would be assigned a low value by label entropy and label margin, but a high value by most
certain. For the binary classification problem, label entropy and label margin make highly

similar predictions about how items will be valued. Items close to the center of the space

have the highest value, and the ranking of items is identical between both models, making it

difficult to distinguish between them. Settles (2012) observed that the predictions of these

models diverge when considering more complex categorization tasks. For example, in a ter-

nary classification task (see bottom row of Fig. 2), label entropy predicts a preference for

items for which all three classes are likely (e.g., near the junction of the category bound-

aries). In contrast, label margin assigns the maximum value to items for which one category

is highly unlikely but the learner is uncertain about the other two (shown in Fig. 2 by the

high predicted value along the radial axes of the simplex, including the midpoints of each

edge). In short, this model predicts that samples are likely to be allocated close to any

boundary between two categories.

A

B

A B A B

C

(0, 0.5, 0.5)

(1, 0, 0)

(0.3, 0.3, 0.3)

(0.5, 0.5) (0.0, 1.0)(1.0, 0.0)

A B

B

A C
f1

f2

A
B

C

f1

f2

A B

High
Likelihood of selection

Low

A B

B

A C

Label Entropy Label Margin Most Certain
Category Feedback

(Stimulus space)
Space of probability

judgments

B

A C

Ternary

Binary

Fig. 2. Comparing predictions of sampling models (red = more highly valued choices, blue = less valued

choices). Top: For a binary classification problem, a new observation in stimulus space will correspond to a

location on the probability judgment scale, where the leftmost point reflects confidence that the observation

will be classified “A” and the rightmost point reflects confidence it will be classified “B.” For the binary

problem, the predictions of label entropy and label margin are highly similar. Bottom: In a ternary classifica-

tion problem, an item in stimulus space will correspond to a location in the three-category simplex depending

on the learner’s uncertainty. Here, the predictions of label entropy and label margin diverge, allowing us to

test which of the two models better accounts for sampling behavior.
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The design of the present experiment capitalizes on this distinction by extending the

paradigm used in Markant and Gureckis (2014) to a ternary classification problem,

thereby allowing us to separate the predictions of the sampling models presented above.

Participants in the experiment collected information by sampling new instances and

receiving feedback about their category membership. In order to obtain an estimate of a

learner’s uncertainty at any point in time, they also judged the likelihood that a sampled

instance belonged to each of the three categories (before receiving feedback about its true

label).

The goal of our design was to use these subjective judgments to test which model pro-

vides the best account of sampling decisions. Based on past work, we expected either the

most certain or label entropy models would provide the best-fit to a majority of subjects.

Furthermore, we hypothesized that participants best described by label entropy would be

more successful at learning the classification rule because this sampling strategy makes

more efficient use of the information in the task. To foreshadow, both of these predictions

appear disconfirmed: Our results suggest that most participants were better accounted for

by the label margin strategy and that these subjects were more likely to learn the target

rule relative to other participants.

4. Experiment

4.1. Participants

Sixty undergraduates at New York University participated in the study for psychology

course credit. One participant was excluded for ending the task early. The experiment

was run on standard desktop computers in a single 1-h session.

4.2. Stimuli

The category label associated with each stimulus was deterministically defined by a

ternary classification rule of the form shown in the bottom row of Fig. 2. In addition to

the structure that is shown, three more rules were created through different rotations (90,

180, and 270 degrees) of the same boundaries in stimulus space. Each participant was

randomly assigned to one of the four rules (leading to N = {16,14,15,14} for the four

rules) and a random mapping of labels (“CH1,” “CH2,” “CH3”) to categories.

Training stimuli were chosen by participants according to the procedure below. Stimuli

for each test block were generated by subdividing the stimulus space into a grid of 36

equally sized regions and generating a random stimulus from each region.

4.3. Procedure

Participants were instructed that the stimuli in the experiment were television “loop

antennas” and that each unique antenna received one of three channels (CH1, CH2,

10 D. B. Markant, B. Settles, T. M. Gureckis / Cognitive Science (2015)



or CH3). Their goal was to learn the difference between the three types of antennas

so that they could correctly classify new antennas during the test blocks. The experi-

ment alternated between training blocks (8 trials each) and test blocks (36 trials each).

Participants were told that the experiment would end when they correctly classified 34

of 36 test items (94%) in a single test block. If a participant failed to reach that cri-

terion, the experiment ended after 16 rounds or at the end of an hour (whichever

occurred first).

4.3.1. Training trials
Participants sampled a new antenna by adjusting the size and orientation and receiving

feedback about which channel was received. They were instructed that they should design

antennas they thought were useful and that would help them to predict the TV channel

for other designs they had not yet tested.

Each training trial began with the presentation of a randomly generated antenna. Par-

ticipants then adjusted its size and orientation by moving the mouse from left to right

while holding either the “Z” or “X” key, respectively. Only one dimension could be

changed at a time, but participants could make any number of changes and were self-

paced. When the stimulus was the desired size and orientation, they pressed the mouse

button to obtain feedback.

Following their selection but before feedback was displayed, the participant judged the

likelihood that the antenna would receive each of the channels using a series of three rat-

ing scales (shown in Fig. 3). The three scales were presented independently such that

only one was visible at a time. When each scale appeared, the participants clicked on a

location in the scale according to their belief that the antenna they had designed would

receive that channel. Labels were provided to indicate how different locations corre-

sponded to different degrees of subjective probability, but participants were instructed

that they could respond anywhere within the rating scale. A response was required for

each scale, and there was no time limit for entering the response. The initial position of

the mouse cursor within each scale was randomized, allowing us to evaluate whether

responses were influenced by the starting position.

Following the probability judgment, feedback was displayed above the selected

antenna for 4s. The feedback display included the correct category label for that antenna,

as well as the probability judgments that the participant had just entered (see Fig. 3, bot-

tom). This helped the participant to evaluate the accuracy of his or her prediction, given

the true category label.

4.3.2. Test trials
Each block of eight training trials was followed by 36 test trials. On each test trial, a

single item was presented in the center of the display and the participant classified the

item according to the channel he or she believed it was most likely to receive. A response

was required to complete the trial, and participants responded at their own pace. No feed-

back was provided on individual test trials. At the end of each test block participants

were told their overall accuracy from the test block they just completed.
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4.4. Results

4.4.1. Classification performance
Thirty-six participants (62%) successfully reached the accuracy criterion of 94% cor-

rect within the available time.3 Of those participants, the average number of blocks to cri-

terion was 6 (SD = 3.1). For the remaining participants, the average number of blocks

completed was 9.8 (SD = 3.6).

4.4.2. Probability judgments
On each training trial, the participant judged the likelihood that the stimulus they

selected belonged to each of the three categories, resulting in three values between 0 and

CH1

Feedback

Probability judgment

How likely is it this antenna receives                     ? CH1

Don’t Know Somewhat
Likely

Somewhat
Unlikely

Channel received:Your prediction:
CH1

CH2

DefinitelyDefinitely NOT

CH3

Fig. 3. Top: Probability judgments were entered by clicking on a scale for each of the three categories

(CH1, CH2, and CH3). Bottom: Probability judgments were displayed alongside the category label during

feedback.
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1 based on where they clicked within the response scale. In order to verify that partici-

pants were not simply responding based on the position of the cursor, for each rating we

measured the difference between the initial (random) cursor position and the participant’s

response. Any trial in which the response did not differ by more than 5% of the scale

from the initial cursor position (for at least one of the three ratings) was classified as a

non-response. This cutoff was chosen based on our intuition about how much the position

would vary if the person simply clicked wherever the cursor appeared, and it was

intended to be a conservative criterion to exclude any partial judgments that could bias

the results. Using this exclusion criterion, the average proportion of non-responses was

.33 (SD = .17). Two participants were excluded from further analysis because their pro-

portion of non-responses was more than three standard deviations above the group mean

(83% and 94%).

4.4.3. Overall model fits
Our first goal was to assess the overall fit of the three sampling models to each partici-

pant’s set of probability judgments. For each model, we used rejection sampling to create

a relative frequency histogram that approximated a probability density function over the

three-category simplex (shown in the bottom row of Fig. 2). We calculated the proportion

of samples (out of 1 million) that fell within each of 400 equally sized triangular bins.

Each triplet of ratings was then normalized to sum to one, corresponding to a location

within the same space. The estimated probability of a set of ratings rt then corresponded

to the proportion of samples falling within the same bin as that judgment, FðrtÞ. For each
participant’s full set of judgments, we fit each of the sampling models using the softmax

choice rule (Luce, 1959; Sutton & Barto, 1998):

pðrtÞ ¼ eFðrtÞ=bP
z2Z eFðzÞ=b

ð12Þ

where b is the temperature parameter and Z is the full set of possible response bins

(see Table 1 for quartiles of best-fit values of b). A value of b close to zero implies

that the learner consistently chose samples with the maximum value according to the

model, while higher values of b indicate increasingly random sampling. We then

calculated the log-likelihood of each judgment made by a participant and summed

Table 1

Quartiles for distribution of best-fit values of temperature parameter

Q1 Q2 Q3

LE .0003 .0004 .0010

LM .0006 .0010 .0031

MC .0016 .0021 .0053
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across all trials to get an overall score for each model. These scores were calculated

using only those trials that were not classified as non-responses as described above.

Classifying participants according to the model with the highest log-likelihood, we

found that 17 people (30%) were best-fit by label entropy, 32 people (56%) were best-fit

by label margin, and the remaining 8 people (14%) were best-fit by most certain. Judg-
ments made by participants, separated by the best-fitting model, are plotted within the

three-category simplex in Fig. 4A, with each point representing the probability judgment

for a single sample chosen by a participant. A higher density of points reflects an

increased tendency (as a group) to sample stimuli in a given region of the probability

judgment space. Upon visual inspection, the overall pattern for each group corresponds to

the predictions of the best-fitting model shown in Figure 2.

4.4.4. Relating sampling decisions to learning
We next examined whether success at learning the rule was related to the sampling

strategy reflected in participants’ probability judgments (see Fig. 4B). Of those partici-

pants who reached the learning criterion, 23 (64%) were best-fit by label margin, 9

(25%) were best-fit by label entropy, and the remaining 4 (11%) were best-fit by most
certain. Among participants who failed to reach criterion, 8 people were best-fit by label
entropy, 9 were best-fit by label margin, and the remaining 4 were best-fit by most
certain.

Although a majority of participants were best-fit by label margin overall, in general

participants had relatively heterogenous strategies, with some of their selections more

likely according to one of the other models. Thus, rather than dividing people based on

the best-fitting model, we next tested whether the frequency with which people made

selections most consistent with each model was related to whether they learned the rule.

We divided the probability space into three equally sized regions corresponding to the

predictions of each model (see Fig. 5, left). Note that using this method, the label margin
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Fig. 4. (A) Normalized probability judgments plotted within the three-category simplex for participants best-

fit by each of the three models (see Fig. 2 for reference). (B) Number of participants who reached the learn-

ing criterion, divided by which sampling model provided the best-fit.
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region does not include samples in the center of the simplex that are also predicted by

label entropy.
We then categorized each probability judgment according to the region it fell within

and measured the proportion of samples that a participant made in each of the three

regions. Participants who reached the learning criterion made more samples in the label
margin region than those failed to reach the criterion (t(55) = 2.04, p < .05). However,

there was no difference between learners and non-learners in the frequency of sampling

in the label entropy (t(55) = 0.44, p = .6) or most certain (t(55) = 0.06, p = .95) regions.

Thus, successful learning in the task was associated with increased sampling of items that

are most consistent with the label margin model.4

5. Discussion

In many real-world contexts people can control what information forms the basis of

their learning and decision making. As a result, their performance often hinges on how

they make sampling decisions, and in particular, whether those decisions facilitate new

learning or simply reinforce existing beliefs. Previous research has painted a mixed pic-

ture in this regard. A long history of work on hypothesis testing supports the view that

people tend to be “confirmatory” information samplers, looking for data that is consistent

or strongly predicted by a focal hypothesis (Beattie & Baron, 1988; Klayman, 1995; Wa-

son, 1968). In contrast, theories of normative information acquisition propose that people

search for information in a manner consistent with optimizing the amount of information

conveyed by their actions (Klayman & Ha, 1987; Nelson, 2005; Oaksford & Chater,

1994).

Under many conditions, these two theories make qualitatively distinct predictions as to

the kind of information people will collect as they learn. However, it is also useful to
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Fig. 5. Left: Each judgment was classified according to the model assigning it the highest likelihood, effec-

tively dividing the probability space into three regions. Right: The frequency of sampling items within the

label margin region (but not other regions) was related to successful learning.
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consider that they are two extremes in terms of how information about alternatives con-

tributes to sampling decisions. In many domains, the generation and/or use of alternatives

has been linked to how people reason and the quality of their decisions (Dougherty,

Gettys, & Thomas, 1997; Evans, 2007; Newstead et al., 2002; Sprenger et al., 2011;

Thomas, Dougherty, Sprenger, & Harbison, 2008). The consideration of alternatives has

often been proposed as a critical factor mediating whether people engage in confirmatory

or normative sampling (Sanbonmatsu, Posavac, Kardes, & Mantel, 1998), but these

behaviors have often been treated as a dichotomy rather than as endpoints on a

continuum. In even moderately complex problems that require people to reason about

alternative hypotheses, the best account for their sampling behavior may correspond to a

more intermediate position on this dimension.

5.1. Margin sampling: A preference for “local” classification uncertainty

In this study, we found clear evidence for an intermediate sampling behavior, with a

majority of participants best described overall by the label margin model. According to

this model, items are preferred when they are likely to belong to two categories (indepen-

dent of the likelihood of any remaining categories). This formalizes the idea that people

seek out information to reduce “local” sources of uncertainty related to a subset of alter-

natives. In contrast, normative models (including information gain, which is identical to

label entropy in our task) predict that people should sample according to a “global” mea-

sure of uncertainty, with the strongest preference for items that are equally likely to

belong to any category. For an ideal observer in this task, globally uncertain items con-

vey the greatest amount of information about possible classification rules, and margin

sampling should only reduce the efficiency of learning as it will tend to rule out fewer

alternative rules per item sampled (a gap which increases with the number of possible

categories).

In addition, our results showed that a tendency toward margin sampling was associated

with more successful learning of the target rule, relative to the other models tested. Peo-

ple who were best-fit by label margin were more likely to reach the learning criterion

overall. Moreover, across all participants, the frequency with which people sampled items

that were strongly predicted by label margin (but not label entropy) was related to

whether they reached the learning criterion.

Evidence of margin sampling suggests a general preference for a local form of explo-

ration, but it is not diagnostic about the exact underlying sampling process. One possibil-

ity is that, when faced with a multidimensional task like the one used here, people

decompose the problem into simpler components. This kind of piecemeal strategy may be

more effective when it is difficult to simultaneously consider many alternatives or to pro-

cess information about multiple feature dimensions. Thus, margin sampling may reflect

an adaptation whereby people isolate individual components to learn in succession, akin

to the “control of variables” strategy that is an important part of scientific thinking more

generally (Klahr & Dunbar, 1988; Kuhn & Dean, 2005). Alternatively, even if people

do not rely on this particular strategy, they may have learned over the course of prior
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experience that margin sampling is more effective and, as a result, ascribe higher utility

to items predicted by that model.

Another reason people might prefer the label margin strategy is that it is easier to pro-

cess feedback from dichotomous tests. For example, if an individual is completely uncer-

tain about an item, the feedback that it belongs to category “A” may be less easy to

integrate with his or her understanding of the category (since he or she did not make a

strong prediction to begin with). In contrast, for items where the participant is uncertain

between only two categories, feedback can be decisive. This constraint may become

increasingly important as the number of category labels or discrete outcomes that are pos-

sible for any given query increases.

One limitation of the current study is our dependence on participants’ self-reported

probability judgments, since there were no costs for failing to report their subjective

belief accurately. Importantly, we were able to measure a failure to respond by randomly

initializing the cursor position before each rating, and we restricted our analysis to those

judgments for which people made an effortful response. However, it remains a possibility

that probability judgments were biased in some way through the self-report procedure,

and a goal of ongoing work is to verify the validity of margin sampling using alternative

measures of subjective uncertainty.

5.2. Relation to other modeling approaches

Although normative models are generally intended to be computational accounts of

sampling behavior, it is useful to consider their implications for process-level models of

how those decisions are made. A model like information gain implies a prospective

process in which the expected outcomes of an observation are combined to estimate its

effect on one’s current beliefs. We have argued that it is unlikely that people perform this

prospective evaluation, particularly in problems that are unfamiliar or complex, but that

people may use simpler forms of uncertainty that can lead to similar gains. This trade-off

between computational costs and optimality is shared by work on AML, which has shown

that uncertainty sampling is a widely applicable means for improving the efficiency of

training (Settles, 2012).

Specifically, we have shown that when hypotheses are deterministic, information gain
is equivalent to sampling by label entropy, according to which people need only assess

their uncertainty about how to classify an item. Thus, uncertainty sampling may be a gen-

eral-purpose strategy that is less demanding but often consistent with normative princi-

ples. A similar point has been made in recent analyses showing that positive testing can

be equivalent to information gain under certain conditions (Austerweil & Griffiths, 2011;

Klayman & Ha, 1987; Navarro & Perfors, 2011). For example, Austerweil and Griffiths

(2011) showed that when hypotheses make deterministic predictions about the next event

in a sequence, testing the prediction of the most probable hypothesis (e.g., asking “is the

next event A?” and receiving yes/no feedback) will maximize information gain. Our

analysis is complementary in that it applies to the selection of queries without making a

specific prediction (e.g., simply asking “what is this?” and receiving a label). When
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hypotheses make deterministic predictions about the category membership of different

items, uncertainty about an item’s label is directly related to the amount of information it

is expected to convey in this setting.

Within the framework of uncertainty sampling, we provided an example of an interme-

diate sampling process in the label margin model. Our approach is similar to examples of

“rational process models” that embody optimal decision-making with respect to an

approximate representation of the hypothesis space (Griffiths et al., 2012; Sanborn et al.,

2010), the fidelity of which may range from a single-point estimate up to the full distribu-

tion of alternatives. This kind of graded representation could result from a limited capac-

ity for storing alternatives in memory, leading to information search decisions that aim to

reduce uncertainty about the “local” set of alternatives currently being considered

(Dougherty, Thomas, & Lange, 2010; Thomas et al., 2008). However, further work is

necessary to determine whether this kind of preference is caused by limits on memory or

hypothesis generation rather than being learned over the course of experience with similar

problems.

Although we have focused on margin sampling in the present report, people might

pool information about any subset of alternatives when evaluating potential samples. For

example, another model used in AML research, known as least confident, evaluates selec-
tions based on confidence in the single most likely label. Although its predictions are rel-

atively similar to those of label margin in our study, least confident might represent

another intermediate form of sampling that is efficient in many problems that people face.

In general, in rule-based reasoning it is likely that the number of alternatives people con-

sider at a given time is relatively low, and that forms of local uncertainty sampling pro-

vide the best account of how people decide to collect information.
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Notes

1. The more general term confirmation bias has been used to refer to both confirma-

tory forms of sampling (such as the PTS) as well as biased responses to evidence

(e.g., overweighting data consistent with a favored hypothesis). Note that a
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confirmatory sampling process on its own does not imply a bias in the learner’s

beliefs, but it can cause learning to be less efficient than other strategies (see Klay-

man, 1995).

2. Note that the unit of measure for entropy depends on the base of the logarithm in

Eq. 1, but different units are related by a constant multiple (e.g., 1 nat is equal to

1.44 bits of information).

3. No differences were found between the four variations of the category rule at any

point in the analysis (G tests of independence, all p > .05)

4. Although the non-response criterion was chosen prior to the experiment, we

conducted additional analyses with different criteria to check whether our results

depended on the original value. All results were highly similar across different crite-

ria, with one important change that the difference in proportion of LM samples was

marginal at other criteria (e.g., when the non-response criterion is doubled to .1, the

resulting p-value is .056). These additional analyses are available upon request.
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